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Abstract. In this paper, we propose to employ a radial basis function network, 

designed by a multi-objective genetic algorithm, to solve a two-class classifica-

tion of Ground penetrating radar signatures problem. The features used in this 

study are high order statistics that are widely used in the biomedical field. The 

proposed approach gives promising results that can be easily improved in the 

future. 

Keywords: GPR; hyperbola; classification; multi-objective genetic algorithm, 
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1 Introduction 

Ground penetrating radar (GPR) is an emerging sensing technology that allows the 

investigation of undersoil structures by electromagnetic waves. Three types of profiles 

can be obtained: A-scans, B-scans, and C-scans. B-scans are 2D profiles where reflex-

ions of waves are encoded in the form of hyperbolas signatures. These hyperbolic 

structures contain all the information about depth, position of target and material type. 

As so, the localization of these structures in the profiles is a primordial task to enable 

extracting information about buried structures. However, in the upper layers of the 

soil, there are some small objects and installations that produce false alarms (what is 

commonly called clutter). The distinction between these two classes (target and non-

target), is a primordial issue to solve, in presence of different types of noise that ob-

scure the target, including Gaussian additive noise that is originated from the electron-

ics in the acquisition process [1]. In this paper, we propose to achieve this classifica-

tion using a radial basis function neural network, designed using a multi-objective 

genetic algorithm. The used features in this study are third order cumulant features. 
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2 Materials and Methods 

2.1 Features extraction 

Higher order statistics (HOS) features (cumulants, Bispectrum, and Trispectrum), 

widely used in biomedical signal processing [2, 3],  are characterized by their robust-

ness against any type of additive Gaussian noise [4]. 

In this study we use third order cumulant features, because they are the ones that 

characterize better the changes in texture of our sample, compared with second, fourth 

cumulants and Bispectrum features.  

HOS cumulants are computed based on central moments. Assuming a random sig-

nal s(t) with zero mean, the third order cumulants are computed as [3, 5]: 

𝐶3𝑠(𝑡1, 𝑡2) = 𝐸{𝑠(𝑡)𝑠(𝑡 + 𝑡1)𝑠(𝑡 + 𝑡2)}   ,                    (1) 

where t1 and t2 are the time lags, and E[6] denotes the expectation operator.  

Before the features extraction step, data preprocessing is done based on a special 

technique using wavelets [7], that aims to first denoise the samples, and then enhance 

the hyperbolas structures in the profiles. 

Afterword, The 1D features slices are computed using the toolbox available in [8], 

after converting the samples into 1D signals using a Radon transform [9]. As random 

decomposition is largely dependent on the projection angles, samples are normalized 

prior to the application of the transform. 

An example of the 2D features slices extracted using HOS cumulants is shown in 

Fig 1, that demonstrates clearly how this technique can detect the affine transfor-

mations in texture of samples. In this study, we just computed the 1D slices features 

in order to reduce the complexity of the system. We extract eleven features for every 

Radon projection angle in the range [10°-180°], obtained with a step of 10°. This 

results in one hundred and ninety-eight features vector, that are normalized before 

given to MOGA. 

Fig. 1. An example of 2D cumulants features for a target sample: (a) the corresponding original 

(small size) sample and the pre-treated one (large size), (b) HOS cumulants magnitude features 

contour plot for Radon transform with angle θ=180°. 
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2.2 MOGA RBF design  

In this paper we use for classification a radial basis function neural network, which 

is a simple structure composed of an input layer, one hidden layer with Gaussian acti-

vation functions and an output layer. 

MOGA [8] is a framework that employs a genetic algorithm approach, for solving 

problems with multiples objectives. In this study, MOGA is used for the design of an 

optimized RBF structure for classification problems. 

Hence, the current classification problem is formulated as: 

min⁡φj(𝐯i, n,𝐰)j=1,..,5 ,                               (2) 

where φj, j=1,..,5 correspond to the objective functions to be minimized, which are 

the model complexity, the number of false positives and false negatives obtained for 

the training and testing sets (FPtr FNtr FPtt FNtt).vi corresponds to a subset of the fea-

tures vector, indexed by the index vector i, n is the number of neurons, and w the RBF 

model parameters. Notice, however, that some objectives can be recast as restrictions. 

The training set is used to estimate the network parameters, while the testing set is 

used for early-stopping. 

Each potential solution of the mentioned problem is encoded as a chromosome (in-

cluding the number of neurons in the network and pointers to the selected features), 

and as any genetic algorithm based process, selection, mutation and crossover repre-

sent the primordial operations for ensuring the reproduction of the population through 

each iteration of the algorithm. MOGA uses, for model parameter estimation, an im-

proved version of the Levenberg-Marquardt (LM) algorithm [10], which [11, 12] 

improves the training process. 

3 Simulation, Results and Discussion 

3.1 Database splitting and processing  

The samples of the database were extracted from 133 GPR radargrams provided by 

the authors of [13]. We chose the sample size 41×41 to capture the whole signatures. 

These samples are labeled manually with two classes, targets or non-targets. 

The database contain 3186 samples, that were split using the ApproxHull algorithm 

[14], so that all convex hull points are included mandatorily in the training set. Data is 

divided into training, testing and validation sets, with 60%, 20% and 20% of the data, 

respectively. After scaling and formatting the data, in a way that the rows correspond 

to samples, and columns to HOS cumulants features, we used it in MOGA. A first run 

of MOGA is executed without any restrictions, to have knowledge of the modelling 

capabilities, which is used in subsequent MOGA executions. 

3.2 Results and discussion 

The number of generations for MOGA was set to 32, and a population of 100 indi-

viduals was used. The number of neurons was allowed to vary between 2 and 20. 

Since the design algorithm is stochastic, a nearest to origin strategy was used to select 
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the best out of 10 training trials for each model. To ensure diversity in the population, 

the proportion of random immigrants was set to 10%, the selective pressure to 2, with 

a crossover rate of 70%. 

We present the results of the first experiment of MOGA in Table 1, in terms of the 

minimum, mean and maximum values of the objectives for the three data sets and, in 

the last columns for the whole data. We show additionally the classification accuracy, 

defined as ACC = (TP+TN)/N, N being the total number of samples.  

Table 1.  First experiment with MOGA using 198 features 

  Complexity FPtr FNtr ACCtr FPtt FNtt ACCtt FPv FNv ACCv FP FN ACC 

Min 6 0 0 67.7 1.2 24.5 71.3 1.1 22.2 74.2 1.6 9.2 70 

Mean 623.9 5 18 89.7 9.4 38.1 81.2 9.1 37 82.7 6.9 24.6 86.6 

Max 3660 27.6 76.5 100 21 83.8  87.3 21 82.7 87.6 24.3 78.6 92.8 

 

Within the generated solutions in the first experiments, models could obtain an 

overall accuracy of 92.761% and a testing accuracy of 87.56%, which is very promis-

ing for a first experiment. Based on these results other experiments were formulated 

with different restrictions on complexity, and FP and FN for testing and training. In 

Table 2, we have summarized all the experiments, in terms of their parameterization. 

From every experiment, we selected two models, the one that gives the best results on 

the overall accuracy (ACC model), and the one that gives the best results on the vali-

dation set (val model), in terms of accuracy on (ACCv) and false negatives (FNv). The 

performance of these models is shown in Table 3. 

In this study, we were focused on the design of a model that gives the minimum 

FNv rate and the higher ACCv; as so the chosen model depicted in red (model 7744) is 

the one adopted. This model has eleven neurons in the hidden layer, and uses only 

fifty-eight features from the 198 set of features. The results obtained are very promis-

ing, compared with other approaches in the literature, that obtains results in the same 

range, but with models with a very high complexity [15]. For instance, these results 

can be compared with an approach [13] using the Viola-Jones algorithm [16], where 

the authors report, for the testing set, an average FP rate of 26% and an average FN 

rate of 35%. With the proposed approach, we obtain the values of 10% and a 22%. 

4 Conclusions 

Ground penetrating radar is an emerging technology that allow exploring the un-

dersoil structures with very high resolution. The classification of targets in the GPR 

profiles is a difficult problem to solve. Additionally, for most of the cases, the de-

signed systems will be applied in real time on the field. As so, the employed classifier 

must have a low complex structure, to meet the time constraints. The approach that is 

proposed satisfies this criterion, achieving additionally very promising accuracy re-

sults.  To conclude, the performance of the designed RBF network could be improved 

by running further MOGA experiments with other parameterizations. 



5 

Acknowledgements 

Houda Harkat acknowledges the financial support of the Portuguese Erasmus National Agency, 

under the contract 2015-01-PT01-KA107-04276. Antonio Ruano acknowledges the support of 

the Portuguese Foundation for Science and Technology, through IDMEC, under LAETA, pro-

ject UID/EMS/50022/2013. We are grateful to Christian Maas, from the Institute for Geophys-

ics, Westfälische Wilhelms-Universität Münster for providing the data for testing our approach. 

References 

1. Tebchrany, E., Contribution of ultra-wide band and polarization diversity 

for the non destructive evaluation of civil engineering structures using the 

ground penetrating radar. 2015, University of Marne-la-Vallée. 

2. Noronha, K.P., et al., Automated classification of glaucoma stages using 

higher order cumulant features. Biomedical Signal Processing and Control, 

2014. 10: p. 174-183. 

3. Mendel, J.M., Tutorial on higher-order statistics (spectra) in signal 

processing and system theory: theoretical results and some applications. 

Proceedings of the IEEE, 1991. 79(3): p. 278-305. 

4. Tsatsanis, M.K. and G.B. Giannakis, Object and texture classification using 

higher order statistics. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 1992. 14(7): p. 733-750. 

5. Nikias, C.L. and J.M. Mendel, Signal processing with higher-order spectra. 

IEEE Signal Processing Magazine, 1993. 10(3): p. 10-37. 

6. Alamin, Y.I., et al., An Economic Model-Based Predictive Control to 

Manage the Users’ Thermal Comfort in a Building. Energies, 2017. 10(3): p. 

321. 

7. Harkat, H. and S. Dosse Bennani, Ground Penetrating Radar Imaging for 

Buried Cavities in a Dispersive Medium: Profile Reconstruction Using a 

Modified Hough Transform Approach and a Time-Frequency Analysis. 

2015, 2015. 5(2): p. 78-92. 

8. Swami, A., J.M. Mendel, and C.L.M. Nikias, Hi Spec Toolbox : For Use 

With MATLAB: User's Guide, M. Natick, Editor. 1993, Math Works. 

9. Radon, J., Über die bestimmung von funktionen durch ihre integralwerte 

längs gewisser mannigfaltigkeiten, in Berichte Sachsische Akademie der 

Wissenschaften. 1917, Leipzig: Mathematishe-Physicalische Klasse. p. 262-

277. 

10. Levenberg, K., A METHOD FOR THE SOLUTION OF CERTAIN NON-

LINEAR PROBLEMS IN LEAST SQUARES. Quarterly of Applied 

Mathematics, 1944. 2(2): p. 164-168. 

11. Ferreira, P.M. and A.E. Ruano. Exploiting the separability of linear and 

nonlinear parameters in radial basis function networks. in Proceedings of 

the IEEE 2000 Adaptive Systems for Signal Processing, Communications, 

and Control Symposium (Cat. No.00EX373). 2000. 



6 

12. Ruano, A.E., P.M. Ferreira, and C.M. Fonseca, An overview of nonlinear 

identification and control with neural networks, in Intelligent Control 

Systems using Computational Intelligence Techniques. 2005, Institution of 

Engineering and Technology. p. 37-88. 

13. Maas, C. and J. Schmalzl, Using pattern recognition to automatically 

localize reflection hyperbolas in data from ground penetrating radar. 

Computers & Geosciences, 2013. 58: p. 116-125. 

14. Ruano, A., H.R. Khosravani, and P.M. Ferreira, A Randomized 

Approximation Convex Hull Algorithm for High Dimensions. IFAC-

PapersOnLine, 2015. 48(10): p. 123-128. 

15. Hamdi, A. and H. Frigui, Ensemble hidden Markov models with application 

to landmine detection. Eurasip Journal on Advances in Signal Processing, 

2015: p. 15. 

16. Viola, P. and M.J. Jones, Robust Real-Time Face Detection. International 

Journal of Computer Vision, 2004. 57(2): p. 137-154. 



Table 2.  The four MOGA experiments 

Experiment N° Objectives/Restrictions Parameters 

MOGA_1 
Complexity                                                                                                                                                                                                                                                                                                                                                                              

FPtr, FNtr; FPtt, FNtt                                                                                                                                                                                                                                                                                                                                                                              

- Nb of generations: 32; Nb of neurons  [2, 20]; Nb of input features

- Early stopping termination criterion with a maximum of 50 iterations; number 

of training trials 10                                                                                                                                                                                                                             

MOGA_2 
Complexity<2000                                                                                                                                                                                                                                                                                                                                                              

FPtr, FNtr; FPtt, FNtt                                                                                                                                                                                                                                                                                                                                                                                

- Nb of generations: 47; Nb of neurons  [2, 20]; Nb of input features [80, 198]                                                                                                                                                                                                                                                                                                                                          

- Early stopping termination criterion with a maximum of 20 iterations; number 

of training trials 5                                                                                                                                                                                                                             

MOGA_3 
Complexity                                                                                                                                                                                                                                                                                                                                                                               

FPtr, FNtr; FPtt<53, FNtt

- Nb of generations: 100; Nb of neurons  [2, 20]; Nb of input features [1, 80]                                                                                                                                                                                                                                                                                                                                           

- Early stopping termination criterion with a maximum of 50 iterations; number 

of training trials 5                                                                                                                                                                                                                             

MOGA_4 
Complexity                                                                                                                                                                                                                                                                                                                                                                               

FPtr<150, FNtr<100; FPtt<53, FNtt                                                                                                                                                                                                                                                                                                                                                             

- Nb of generations: 100; Nb of neurons  [2, 20]; Nb of input features

- Early stopping termination criterion with a maximum of 50 iterations; number 

of training trials 5 

Table 3.  The selected models from every MOGA experiment 

 

Experiment N° Chosen Model Model Complexity FPtr  FNtr  ACCtr FPtt FNtt ACCtt  FPv  FNv  ACCv  FP  FN ACC  

MOGA_1 
ACC model 2398 2208 0.45 3.28 98.40 10.85 25.98 84.24 10.41 28.11 84.37 4.89 11.29 92.76 

Val model 557 1356 0.89 3.93 97.87 11.79 28.92 82.64 12 22.70 84.85 5.70 11.37 92.23 

MOGA_2 
ACC model 2971 1805 0.09 2.49 98.94 10.85 31.86 82.33 11.54 26.49 84.05 4.94 11.55 92.63 

Val model 3628 1560 1.34 5.37 97.02 11.80 24.02 84.24 11.09 21.63 85.81 5.75 11.29 92.22 

MOGA_3 
ACC model 7744 696 1.70 7.21 96.07 10.85 29.41 83.12 10.18 21.63 86.44 5.54 13.46 91.55 

Val model 7744 696 1.70 7.21 96.07 10.85 29.41 83.12 10.18 21.62 86.44 5.544 13.46 91.55 

MOGA_4 

  

ACC model 6412 1152 0.27 3.67 98.35 10.38 29.41 83.44 9.73 31.35 83.90 4.54 12.67 92.47 

Val model 3450 567 2.24 8 95.42 9.67 29.41 83.92 7.24 24.87 87.56 4.94 14.50 91.55 
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Abstract. The aim of this article is to present research involving the
employment of intelligent methods for image analysis, particularly, the
binarization process. In this case, the Flower Pollination Algorithm was
used to optimize the internal parameters of the Niblack binarization
algorithm. As a criterion for the quality of the proposed solution, the
morphological parameter called the ’bone volume’ (identical to porosity)
is taken into account. The overarching objective of this study is to model
the structure of cancellous bone based on the analysis of images derived
from Micro-CT Scans.

Key words: Computational Intelligence, Flower Pollination Algorithm,
Biologically Inspired Algorithm, Micro-CT, Binarization, Scans Process-
ing

1 Introduction

In recent times, computational intelligence (CI) methods have been increasingly
applied in science and technology or economics. Herein, biologically inspired op-
timization methods are one of the major CI groups inclusive of many procedures
based on diverse mechanisms of search for suboptimal solution [9], and the wide
applications of optimization algorithms base on CI in wide areas [4, 15, 7] can be
underlined. In this study, we will use the Flower Pollination Algorithm (FPA)
to optimize the parameters of the image analysis algorithm.

Medical image analysis is a most dynamically developing form of exploration
data analysis. In the case of 3D imaging, the primary purpose of describing
a material’s structure is usually to reveal certain characteristic features (i.e.
shape and placement) of its construction. The integrity and differentiation of
bone microstructure affects its mechanical properties, and microstructure evalu-
ation may be useful in both fracture and pathological evaluation, including that
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osteoporosis-induced [1]. The average morphometry characteristics of structure
and porosity are determined taking into account the specific volume within the
analyzed sample. In the analysis of this type of tissue, the complexity of the
microstructure is reflected only in the sense of average value. Therefore, exper-
imental and theoretical models of their properties refer to the microstructural
features of the medium averaged in a given volume, and, should, hence, be in-
terpreted. [18].

The bovine femur bone (Figure 1) used in this study corresponds to the
intended purpose. It is characterized by high variability in the microstructure,
especially in the case of volume fractions, and, thus, porosity [5].

Fig. 1: Bovine cancellous bone, along with the tested cuboid segment.

Among all the non-contact methods, computed microtomography (microCT)
is the most successful in the context of cancellous bone microstructure research.
This is a non-invasive test method which allows a reproduction of the internal
microstructure of the examined object on the basis of the two-dimensional pro-
jections recorded at different angles. MicroCT builds upon the same assumptions
as classical computer tomography, but by using a smaller dot focusing on the
electron beam, it is possible to obtain a higher resolution of the reconstructed
image. Due to its relatively high resolution and non-destructive nature, it has
been used in many fields of science and technology, but its use in medicine (in
the imaging of tissues and organs) has led to its intensive development [17].
Currently, stationary devices of this type are able to achieve sub-micrometre
resolution, but the implementation of this technology involved overcoming two
major obstacles. The first was the need to use computers capable of processing
large amounts of data in as short a time as possible. Equipment of this kind was
often unreachable for financial reasons. The second, more important obstacle
was the need for a high-resolution X-ray system with a sub-focal spot lamp and
high enough power to allow penetration into a dense sample and to return the
image at the correct resolution [2].

One of the foundation algorithm used in modelling bones is image binariza-
tion. In Figure 2 - left side, we can see a bone scan generated through microCT
technology. On the right side of this image is a histogram through which we can
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easily determine the threshold value for the binarization procedure. By way of
the express separation of white from dark pixels, this parameter is global and
the sense of its choice is not a key issue in the final results.

In the low-resolution imagery (see Figure 3) obtained through normal tomog-
raphy, the histogram does not have such a clear region of separation of individual
pixels. Therefore, due to the nature of the examined image subject (bones), the
binarization procedure must be treated as a local character algorithm. In view
of the above, it is desirable to determine the preferred parameters of the bi-
narization algorithm. In the case of the presented studies, an CI algorithm, in
particular, the FPA was used to determine the suboptimal parameters of the
binarization procedure. The correctness of the solution is obtainable through
combining high and low resolution imagery. The presented binarization algo-
rithm (along with the internal parameters) will be applied for low resolution
tomography scans. Hence, the low resolution tomography scan results common
in hospital test procedures can be enhanced.

2 Methods and algorithms

2.1 Binarisation procedure

In the image analysis domain, there are many known binarization algorithms.
Among these, global algorithms have a positive overall effect upon the entire
image, while local algorithms have an effect upon only certain parts of a greater
image. For the topic of this paper, global algorithms can be applied only to
high resolution images. For low resolution scans, we arbitrarily decided to utilize
the binarization algorithm proposed by Niblack [14]. This procedure is based on
calculating a threshold value T for each pixel (x, y, z) according to the following
formula:

T (x, y, z) = m(x, y, z) + k · std(x, y, z) − l (1)

where m(x, y, z) constitutes a local mean, and s(x, y, z) denotes a standard devi-
ation of the neighbouring pixels intensity values. Moreover, a k and l are weight
parameters for each fraction of (1). The value of these parameters greatly influ-
ences the outcome of the binarization process [16].

In the case of high resolution images (Figure 2-left), after applying a median
filter, a global threshold for the Otsu binarisation operation can be automatically
achieved. As the end effect of this procedure, a threshold parameter OOtsu is
obtained. To generate binarisation of the scan, an Auto Local Threshold plugin
(implemented via ImageJ software [13]) is then applied. In all above cases, a
binary procedure for three-dimensional is computed.

2.2 Flower Pollination Algorithm

FPA constitutes type of global optimization procedures. This method is inspired
by the process of flower pollination, and was introduced by Yang in 2012 [19].
This procedure (see: Algorithm 1) starts with an initialization phase. In the
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(a) (b)

Fig. 2: High-resolution grey scale images (a) after registration with the informa-
tion seen in the histogram (b).

(a) (b)

Fig. 3: Low-resolution grey scale image (a) after registration with the information
seen in the histogram.

main loop of the algorithm, a random value is then generated which determines
if global pollination or local pollination is being carried out. The first procedure
is inspired by the movement of insects flying over long distances so as to achieve
the act of distant pollination. This step of the heuristic algorithm corresponds
to the so-called ’exploration of the solution space’. For FPA, Levy flight dis-
tribution is employed to realize this behaviour. The second process is inspired
by a different, local pollination process that is commonly referred to as ’self-
pollination’. Herein, a local search that leads towards the exploitation of the
solution space, is implemented. To determine the ratio of global to local search
processes, a parameter called ’switching probability’ is put into place [11]. The
best value of cost function and the argument for which it was obtained are re-
turned as the outcome of the application of the algorithm. More details about
this metaheuristic algorithm can be found in [19, 11].
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Algorithm 1 Flower Pollination Algorithm [11]

1: Initialize algorithm k ← 1, f(x∗(0)) ← ∞
2: for i = 1 to M {each individual in swarm} do
3: Generate Solution (xi(k))
4: {evaluate and update best solutions}
5: K(xi(0)) ← Evaluate quality(xi(0))
6: end for
7: x∗ ← Save best individual x∗(0)
8: {main loop}
9: repeat

10: for i = 1 to M do
11: if Real Rand in (0, 1) < prob then
12: {Global pollination}
13: s ← Levy(s0, γ) and xtrial ← xp(k) + s(x∗(k)− xp(k))
14: else
15: {Local pollination}
16: ϵ ← Real Rand in (0, 1) and
17: r, q ← Integer Rand in(1, M)
18: xtrial ← xp(k) + ϵ(xq(k)− xr(k))
19: end if
20: f(xtrial) ← Evaluate quality(xtrial)
21: if Check if new solution better then
22: x∗ ← Save best individual x∗(k)
23: K∗ ← Save cost function value for the best individual K(x∗(k))
24: end if
25: end for
26: find best and copy population
27: stop condition ← Check stop condition()
28: k ← k + 1
29: until stop condition = false
30: return K(x∗(k)), x∗(k), k

3 Numerical studies

During the study, the FPA procedure was used to determine the parameters k
and l in the Niblack binarization algorithm. Based on prior studies [11, 8, 12],
the following FPA procedural parameters were determined: number of swarm
members 10, switching probability 0.8, maximal number of iteration 30. In each
iteration of the optimization procedure, two-dimensional vectors of the solution
space [k, l] were evaluated based on the following cost function:

J(k, l) =

∣∣∣∣
BV (k, l)

TV
− BOtsu

∣∣∣∣ . (2)

where BV (k, l) denotes the number of white pixels based on the Niblack proce-
dure, TV constitutes the number of all pixels and BOtsu indicates a reference
value obtained by means of the Otsu algorithm as applied for high resolution
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CT scans. In this simulation, the following constraints: 0 ≤ k ≤ 2 and 0 ≤ l ≤ 2
are utilized.

Fig. 4: Approximation of cost function based on points received during the FPA
simulation.

With regard to the aforementioned criterion for the quality of the proposed
solution, the morphological parameter called the ’bone volume’ BV

TV (identical
to porosity) is taken into account. Furthermore, bone volume, as achieved from
low resolution images, is compared with the result based on the global threshold
OOtsu. In both cases of resolution, in the first stage, a median flirt must be
applied. The difficulty of the above tests is that such are quite expensive (in the
sense of computation time) when generating the evaluation function (2). Indeed,
in every case of use, full binarization of the whole bone is necessary.

In Figure 4, an approximation of the J(k, l) function can be observed. Here,
we can see its multimodal character, hence the application of a metaheuristic
procedure for searching minimal value is completely justified. As a result of
this investigation, we can distinguish two groups of solution vectors - both re-
lated to minima of (1) function. The first one (and the best) is [0, 0] with T =
0.0670, the subsequent group consists of the following solutions [0.4534, 1.2595],
[0.0076, 1.2922], [0.3081, 1.4653], [0, 0.8736] and [0, 1.3549], for which the value
of cost function is T = 0.0760.

In addition, in Figure 5, the results obtained for a new optimization algo-
rithm called ’Particle Swarm Optimization’ (PSO) [6, 3] are presented. Similarly
to the FPA, the PSO procedure belongs to a group of algorithms based on the
idea of swarm intelligence [20]. In this study, we used the PSO algorithm ac-
cording to the recommended internal parameters described in the article [10].
In Figure 5, using a blue (dotted) line, the convergence of the proposed proce-
dure is presented, while the red continuous line represents the convergence of
the PSO procedure. The comparison clearly indicates the significant advantage
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of the proposed solution to the competitive one. The FPA algorithm has a much
faster convergence, and, most importantly, it achieved a better resolution.
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Fig. 5: Convergence comparison of FPA with respect to the PSO algorithm.

4 Conclusions

The present study, a early stage research related to bone modelling, has been
shown. In it, metaheuristics based on the process of pollinating plants are used
to determine the parameters of the binarization procedure. In this case, a simple
evaluation function based on a bone volume approach was employed. However,
it should be emphasized that this bone feature is one of the most important in
modelling reconstruction. By way of the presented research, the best parameters
of the Niblack procedure can be applied to low resolution tomography images.
Further research will be concerned with the introduction of an asymmetry of the
cost function and its extension to other fractions, e.g. anisotropy. In the course
of subsequent research, the already broad spectrum of binarization algorithms
and metaheuristic procedures will be also extended.
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Abstract. In this paper we present a software architecture based on a
multi-agent system whose major goal is the identification of traffic events
from videos. In order to achieve this, H264/AVC motion vectors that ap-
pear in compressed video signal are taken as input. They are classified
depending on their position in the scene and after that each group of mo-
tion vectors obtained from such classification is processed independently
using statistical techniques. The use of this kind of techniques have been
broadly used in the processing of time series like the one we take as in-
put. After the statistical processing, individual results are compared be-
tween them in order to detect patterns related to possible traffic events.
This comparison process can be understood as a cooperative process.
So, to integrate the different processing components of this architecture
we propose the use of a multi-agent system. Multi-agent systems allows
to define a cooperative architecture using individual agents that can be
run in parallel allowing to raise the performance and efficiency of the
global process of event identification. The experimentation of this paper
is driven to the detection of objects in complex traffic scenarios where
the videos are captured from on-board cameras.

1 Introduction

Nowadays in our society the main mean of transport for goods and people is
the road transport. So, the improvement of safety and security in public trans-
portation by means of the use of new technologies can be considered as a major
topic of interest. The use of such technologies have reduced the number of traffic
incidents in a direct way and that is why new efforts in the development of novel
solutions are needed. On the other hand a relevant field of research is the one
related to the statistical analysis of time series. A video can be considered as a
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time series once we have a set of data ordered temporally even more when we
consider only raw data from motion vectors in the compressed domain.

The development of new technologies can be focused from different points of
view. For example, the detection in real time of vehicles, obstacles or dangerous
situations. Another techniques analyses situations after they occur with a dif-
ferent number of exhaustive methods allowing to prevent similar situations in a
future. The way these two different situations are treated is completely differ-
ent with respect to the time needed to find a response and the computational
resources, among others.

In this paper we present the design of a forensic solution for video analysis
captured from a car in motion. The goal of this method in a first stage is the
segmentation of the different objects in the scene and after that the identification
of events by means of the processing of the segmentation results. For the identi-
fication of events we propose the use of a multi-agent platform as we design this
identification process as a cooperative process where different computing units
compare the information retrieved from the video signal. Multi-agent systems
[3], [4], [5] can be considered as a software technology with successful applica-
tions in a wide range of fields like electronic commerce, robotics, information
retrieval, etc.

This paper is structured as follows. The input information is directly ex-
tracted from the video compressed domain, then in Section 2 information related
to the H264/AVC standard is presented paying special attention to the motion
compensation techniques that produces the motion vectors. Furthermore, in this
section we present the statistical techniques used to process the information from
the video. The implementation of such operations are embedded in some of the
agents of the global architecture of agents. After that the design of the multi-
agents platform is detailed in Section 3. Finally, the experimentation and the
conclusions are shown in Section 4 and 5, respectively.

2 Basic processing information

In this section we present the information to be taken and how exactly is pro-
cessed by using statistical techniques in order to obtain relevant information that
could be the adequate to use in later stages to identify events. More concretely,
in Section 2.1 relevant aspects about the video time series taken as input are
detailed whilst in Section 2.2 a statistical method for processing such time series
is proposed.

2.1 Video image processing

H.264 or MPEG4-AVC is a standard for the definition of a high quality and high
compression rate video. It was developed by the ITU-T Video Coding Experts
Group(VCEG) and the ISO/IEC MPEG. Basically, this standard reduces the
amount of data needed to reproduce high quality video. The encoders process
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each frame or picture composing the whole video. The image is divided in par-
titions called blocks and for each block a similar one in a previous or future
frame is searched. This technique is known as motion compensation or motion
estimation. Once a similar block is found in another frame it is not coded, only
the displacement of the block between frames is stored as a motion vector.

Analyzing traffic videos captured from a car in motion is a complex task be-
cause there exists different motion patterns depending on the area of the picture.
So, a global analysis of the picture can produce confusing results. In order to
process independently each one of the flow patterns that could be present in a
traffic video, we propose a division of the picture. We establish next classification
of areas: South, corresponding to the dashboard and the front part of the car,
Center, usually corresponds with the road, West and East corresponding with
the edges of the road and/or the hard shoulders and finally, the North where
cars on opposite lane or the horizon appears. For example, for a video resolution
of 640X480 a possible division specifying coordinates X and Y taken (0,0) as the
top left corner is shown in Figure 1 and the values for the coordinates are:

– North: y ε [0, 175]
– South: y ε [375, 480]
– West: x ε [0, 120]; y ε (175, 375)
– East: x ε [400, 640]; y ε (175, 375)
– Center: x ε (120, 400); y ε (175, 375)

Fig. 1. Division of the picture in areas
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As the South usually corresponds to the front part of the car no valid infor-
mation for the detection of events can be extracted. So, the data from this area
is not considered for future processing stages.

2.2 Statistical extraction of information from video time series

There exists a group of agents dedicated to the statistical processing of informa-
tion obtained from H264/AVC motion vectors. In this section we detailed our
proposal for such statistical analysis. The identification of motion patterns is
directly related to the appearance and disappearance of fields of motion vectors.
For instance, as it is shown in Figure 2.a the existence of an event as a vehicle
approaching in the opposite direction produces a field of motion vectors that
does not exist if there is no vehicle in the scene, Figure 2.b.

Fig. 2. Comparison of vectors in a frame with an object and another with no one

Anyway, the motion vectors are generated by internal encoding procedures
that produces for example that in some frames no motion vector appears, in an-
other ones although there exists field of motion vectors they cannot be associated
to any object or motion pattern in the scene. Then the study of the behavior of
the vectors cannot be restricted to the analysis of a frame. So the evolution of
the motion information in a set of neighbor frames must be completed in order
to generate any reliable result. Now, with the previous premise, we present our
statistical method of processing.

Let Fi(A) be the number of motion vectors, detected in the area A in the
frame number i of the video, where A can take any of the values in the set
{North,Center,East,West} as detailed in Section 2.1. Then in order to detect any
kind of event, m consecutive frames must be analyzed, from Fi(A) to Fi+m+1(A).
The basic idea of the method is to detect the appearance of fields of motion vec-
tors associated to the appearance of objects. Then it is established a comparison
between the number of motion vectors in a frame and the arithmetic mean of the
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number of motion vectors in m subsequent frames, always done for each one of
the division areas independently. Equation 1 shows how to compute this mean.

Mi(A)←
∑j=i+m+1
j=i+1 Fj(A)

m
(1)

To establish a comparison we propose the study of the evolution of the num-
ber of motion vectors by using statistical measures such as the Standard De-
viation (Si(A)) (Equation 2) for the m subsequent frames of the current one,
i.

Si(A)←

√∑j=i+m+1
j=i+1 (Fj(A)−Mi(A))

2

m
(2)

By means of the confidence interval significant differences between the num-
ber of motion vectors and the arithmetic mean of this number in subsequent
frames can be detected. For the computation of the Confidence Interval a Stu-
dent’s t distribution is used. Basically, with this distribution we can estimate the
mean of a population once it is assumed this mean is not normally distributed.
Once the deviation standard is computed the amplitude of the confidence inter-
val is computed in Equation 3 where m − 1 are the degrees of freedom and α
determines the confidence level. For example, to get a confidence level of 99% α
is equal to 0.01.

Amp(Mi(A))← tm−1;α2
× Si(A)√

m
(3)

Once the amplitude is computed the confidence interval is obtained by means
of Equation 4.

CIi(A) = [Mi(A)−Amp(Mi(A)),Mi(A) +Amp(Mi(A))] (4)

To conclude, it must be stated that the way to determine the presence of an
event in a concrete frame is the existence of a number of vectors in a concrete
area out of the bounds of the confidence interval for such frame.

3 Design of the Multi-Agent Architecture

Now the design of the agents architecture is introduced. Such design is deter-
mined by the development technology selected, JADE [6], a framework imple-
mented in JAVA fulfilling the FIPA standard. FIPA is an organization for the
definition of standards promoting technologies related to agents and the inter-
operability between agent platforms developed using different technologies. In
order to establish the communication for the agents the Agent Communication
Language (FIPA-ACL) [2] from FIPA has been selected. In FIPA-ACL a message
contains next fields: sender, receiver, content, language, performative (commu-
nicative act [1]) and protocol, among others. Usually, the content, sender and
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receiver change from one message to another. Nevertheless, protocols provide of
templates that can be used when the communicative intention is similar.

The design of the agents platform must be driven to obtain results in an
efficient and reliable way. So, the most relevant decisions to be taken in such
design are related to the number of agents in the system, their functionalities
and the relationships among them. For example, these decisions directly affect to
the desire achievement of a high degree of parallelism and a correctly balanced
processing load. The design of the relationships determines the communication
flows between agents and the intentionality of such communicative act deter-
mines the protocol to be used. The proposed factory of agents is composed of
four different kind of agents:

– Broker Agent: This agent is the responsible of reading the configuration file
for every different video analyzed. The configuration information is read and
processed and after that a concrete instance of the platform of agents. So the
number of other kind of agents, for instance, depend on such configuration.

– Analysis Agent: It receives the information about the division of the pic-
ture that corresponds to one of the areas. With these coordinates the agent
extracts the information related to the motion vectors in its corresponding
area.

– Aggregation Agent: The information about the motion vectors is received
and then the statistical measures defined in Section 2.2 are computed. This
agent is able to process the statistical data for two areas in parallel.

– Reasoning Agent: In this agent a criterion about the relationship between
results of the statistical processing and events is established. In this case,
events are related to the limits of the confidence interval as shown in Equa-
tion 3. The output is a sequence of frames where an event occurs.

A concrete configuration of the platform, with four analysis agents and two
aggregation agents, is shown in Figure 3 whilst Figure 4 shows the information
flow for this concrete execution. The design of the proposed architecture comes
determined by several factors like the improvement of the parallelization in the
mathematical operations and the execution of the behaviors. Another important
factor is related to communications. They must be as reduced as possible and
the use of a blocking and nonblocking semantic in send and receive primitives
allows to control the execution flow. So, although the execution of the agents
begin simultaneously they are blocked until a concrete agent sends the data they
need to operate.

4 Experimental results

Now, we present a brief review of the full set of experiments. With the experimen-
tation we try to demonstrate that this proposal allows the detection of events.
With this aim, we have extracted manually from a video these frames where an
event happens. Different tests have been completed modifying the configuration
variables in equations defined in Section 2.2.
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Fig. 3. Configuration of the agents platform for a specific configuration.

Fig. 4. Multi-agent platform with information flow

For instance, using a value of m = 10 and α = 0.01 an event has been
detected in the division area of the picture named as West in the frame number
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35. For this frame and its m subsequent frames the resulting values for Equations
1 to 4 are shown in Table 1.

i(frame) Fi(W ) Mi(W ) Mi(W )−Amp(Mi(W )) Mi(W ) +Amp(Mi(W ))

35 139 93.0 51.9804 134.0196

36 104 91.3 51.6222 130.9778

37 86 94.6 47.9791 141.2209

38 115 95.7 43.7031 147.6969

39 81 100.9 41.2024 160.5976

40 107 98.8 37.9925 159.6075

41 98 101.6 35.8298 167.3702

42 82 104.9 41.4358 168.3642

43 103 106.2 41.9713 170.4287

44 80 112.7 45.6012 179.7988

45 74 120.6 57.1246 184.0754

46 87 127.9 65.2499 190.5501

Table 1. Statistical analysis in West (W) area in frame number 35

Then, the number of vectors in the frame 35, F35(W ) is 139, greater than the
upper bound of the interval, 134.0196. So, an object should appear associated to
the West in this frame disappearing from this zone in the subsequent 10 frames,
the value of m. In Figure 5 frames 33, 35, 38 and 44 are shown from the analyzed
video. It can be observed how there is a truck driving in the opposite direction
and more concretely in the frame number 35 is when this truck enters in the
West. In the frame number 44 the truck disappears from this concrete area of
the picture.

5 Conclusion

In this paper, the development of a system to analyze traffic videos to detect
events is presented. Once detected the idea is to design models for the prediction
of these events in architectures of agents that could allow the real time process-
ing of video information. The video processing using only information from the
compressed domain reduces dramatically the amount of data to be processed,
then, the design of models for real time applications is feasible. Furthermore, the
use of high-level software architectures like multi-agent systems allow to encap-
sulate the information in a direct way completing the different computing tasks
in parallel and synchronizing the global operation of the system.

As future work, it could be incorporated a new kind of agent containing
the full catalog of events to be detected. Even, these agents could retrieve only
information for a subset of agents depending on the event detected in a concrete
instant. Furthermore, for the study of the motion vectors it could be considered
the creation of a set of overlapping regions instead of using a strict partitioning
of the scene.
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Fig. 5. Frames 33, 35, 38 and 44
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Abstract. Polyps in the clolrectal part of the bowel appear often, and in
many cases these polyps can develop into malign lesions, such as cancer.
Colonoscopy is the most efficient way to study the inner surface of the
colorectum, and docorts usually are able to detect polyps on motion
picture diagnostic session. However, it is useful to have an automated
tool that can help drawing attention to given parts of the image, and
later a method for classification the polyps can also be developed.
Statistical properties of the colour channels of the images are used as an-
tecedents for a fuzzy decision system, together with edge densities, and
Renyi entropies, structural entropy. However promising the processed
images are, the variation in the preapration of the diagnosis as well as
the pracitce of the operating personnel can lead to images with signifi-
cantly different noise and distortion level, thus detecting the polyp can be
complicated. In the following considerations image groups are presented
that have similarities from the polyp detection point of view, and those
type of images are also given, which can spoil a well prepared detecting
system.

Keywords: Fuzzy inference, colorectal polyp, fuzzy rule interpolation,
image segmentation

1 Introduction

Colorectal cancer is among those cancer types that are not easy to screen, as
mostly endoscopy is needed for the diagnosis. It is also among the top 5 most
lethal cancer types, mainly because of the insufficient screening and late diagno-
sis. This cancer type is usually originated from polyps on the inner surface of the
last part of the bowel, that are mostly visible with colonoscope, however, only
a small percentage of the polyps has potential to develop into a malign object.
The colorectal polyps are classified according to their shape, i.e., whether they
are protruding into the bowel, slightly elevated, flat or depressed into the wall of
the bowel [1], [2]. The pattern of the surface of the polyps can also be classified



into groups from benign through the ones having potential to develop into ma-
lign, and pe-cancerous polyps to the developed cancer, each group having their
characteristic surface-pit patterns [3].

Endoscopy is a method that is not likely to be used for large-scale screening
of the population, as it is costly, the endoscope has to be operated by expen-
sive medical professionals, and it is considered as inconvenient by most of the
population. Capsular endoscopy seems to be more reasonable, however, it is still
costly, the images are of poorer quality, and sometimes problem arise when pass-
ing through the bowel. The polyps usually can be recognized by the operator
of the endoscope, however, an automatic detection aid can provide help for the
medical staff. Also automatic pattern recognition could lead to less expensive
diagnosis, and less need for biopsy. Based on our experience with classification
of telecommunication lines [4], [5], a fuzzy inference system was introduced with
15 antecedent dimensions for colonoscopic image segments. The antecedent di-
mensions were statistical parameters of the processed image [6],[7], that seemed
to be relevant for distinguishing the image parts with polyp segments from those
without polyp, however, as mostly the classification scheme often tended to clas-
sify even the segments with polyp into non-polyp class we studied the reason for
this performance.

In the following considerations a fuzzy classification scheme is given for de-
termining whether a given image segment contains polyp parts. As a first step,
in Section 2 antecedent dimensions are selected that have the potential to distin-
guish between parts with polyp and without polyp. As a second step, in Section
3, Mamdani-type fuzzy classification method is outlined with stabilized KH in-
terpolation. Next, based on the fuzzy membership functions of the antecedent
dimensions, the classification method is given. In Section 4, the classification
algorithm is applied to a database of images available at [8]. As the database
consists of very different image types, the images are grouped, so that we could
determine, which image types tend to ”hide” their polyps, and for which images
are the selected antecedent dimensions good. In the last section the results are
discussed.

2 On the selected antecedent dimensions

In colonoscopy images usually there are many unfavourable features. The images
are mostly pink, with shiny surfaces and lots of reflections of the lightsource of
the device. Being blurry due to movement of the bowel, covered with remaining
material due to insufficient preparation of the patient are not uncommon, more-
over, usually the camera resolution is not too high and the image compression
method is optimized for motion picture view and medical report prints, thus
making artifacts, tiling, colour distortion is also possible.

Due to these facts, as a first step we decided to select such parameters for the
decision, that can distinguish a background with larger, bluish pattern (the veins)
from the polyps, that are mostly lighter, have more dense, and not blue pattern,
have a smaller curvature compared to the large bowel wall and has shadows and



contour. As the polyps are mostly better lighted than its environment, simple
statistical parameters, as the mean and the standard deviation can theoretically
useful. Also, the edge density is larger in polyps, if the focus of the camera is
not too bad, thus we selected a standard, Cranny filter based edge detection
algorithm to convert the picture into black in general and white in placed where
edges are present, and calculated the number of white pixels compared to the
total number of pixels. as a last step, as we wanted information on the shape of
the surface, we also selected structural entropy of the image segment.

2.1 On structural entropies

Pipek and Varga introduced [14]–[18]a pair of entropy based quantities (q, Sstr)
for describing the topology free structure of a function, that is normalized as a
probability distribution, i.e. in our case the brightness of the pixels Qn has to
be normalized as

Qn ≥ 0, for n = 1, . . . , N (1)
N∑

n=1

Qn = 1. (2)

As a first step, a so called participation ratio or delocalization measure

D =

(
N∑

n=1

Q2
n

)−1

(3)

was determined. This quantity shows, to how many pixels the distribution Qn
expands. The participation ratio can be normalized by the total number of pixels
N , thus receiving another quantity, the so called spatial filling factor

q =
D

N
. (4)

This gives the ratio of the pixels and fulfills the following inequality

1

N
≤ q ≤ 1. (5)

Mostly the logarithm of the filling factor is used.
The well-known Shannon or von Neumann entropy

S = −
N∑

n=1

Qn lnQn (6)

is a quantity that measures how much the pixel distribution {Qn|n = 1, . . . , N}
deviates from the uniform distribution (where all Qns are the same, 1/N).



The Shannon entropy can be divided into two parts, the extension and the
structural entropy. As the distribution {Qn} is localized to D lattice sites, the
extension entropy can be defined as

Sext = lnD. (7)

This quantity is practically the entropy of a uniform distribution over D sites.
The remaining part, the structural entropy thus reflects on the shape of the
distribution: it gives how much the distribution {Qn} differs from from the step
function. The definition of the structural entropy is

Sstr = S − lnD. (8)

he inequality

0 ≤ Sstr ≤ − ln q (9)

is valid for the structural entropy.
The pair of quantities (q, Sstr) is called generalized localization. If a distri-

bution {Qn} is of a given localization type (e.g. Gaussian, exponential), and its
structural entropy is plotted as a function of its filling factor q, it is located on
a characteristic line on the localization map Sstr(lnq). As an example, the local-
ization map of the blue colour channel of the 18 groups of images from database
[8] are given in Fig. 2.1.

3 On fuzzy classification with interpolation of the sparse
rule bases

Since the time Zadeh introduced fuzzy sets [12] their popularity increased rapidly
as the concept of not belonging to a group entirely was very effective in decision
and control systems. Mamdani with his coworkers was one of the first persons,
who developed fuzzy set based inference systems [13], which was effective in our
previous work [5]. However, if the resulting rule bases are sparse, and the value
of an observable is located outside of the supports of the rules, an interpolation
has to be carried out in order to make the evaluation, and thus the inference
possible.

3.1 Stabilized KH rule interpolation

A mathematically stable and widely used fuzzy rule interpolation method is the
stabilized KH interpolation [9, 10, ?]. We do not have sparse rule bases in the
sense that there are holes between the supports of the rules, but the support of
the rules is finite, thus an interpolation is sometimes necessary. The KH interpo-
lation is based on the distances between the observed value and the antecedent
sets of the given dimansion. The closures of the α-cuts of the interpolated reso-
lution are introduced as



Fig. 1. Structural entropy plots Sstr vs. ln q for the 18 image groups for 50 by 50 tile
size for the colour channel blue.



inf{B∗
α} =

2n∑

i=1

(
1

dαL(A∗, Ai)

)k
inf{Biα}

2n∑

i=1

(
1

dαL(A∗, Ai)

)k (10)

and

sup{B∗
α} =

2n∑

i=1

(
1

dαU (A∗, Ai)

)k
inf{Biα}

2n∑

i=1

(
1

dαU (A∗, Ai)

)k . (11)

Here A∗ denotes the given observation, index i is the number of the rules, and
k is the number of the dimensions, thus Ai denotes the antecedent sets in rule i.
The distances dαL(A∗, Ai) and dαU (A∗, Ai) are the lower and upper bounds of
the distance between the α-cuts of the given observation and the antecedents,
and B∗ denotes the fuzzy conclusion [11]. As we are using triangular fuzzy sets,
it is sufficient to determine the values of B∗

α for α cuts α = 0 and 1.

4 Fuzzy classification of the image segments

The database of the colonoscopy pictures [8] consists of 379 elements, each of
size 574 × 500. In our work, as a first step, we cut the image into tiles of pixel
size N × N , with N = 20, 30, 40, 50, 60 and 70 so that we would be able to
determine, whether the size of the image segment influences the classification.
Next, the received tiles were grouped into two sets, one for determining the fuzzy
sets of the rules, the other for testing the results. The number of tiles without
a polyp segment outnumbered the ones with polyp by almost a magnitude.
The classification seemed to be effective, as with decreasing the tile size to 20
by 20 the success rate could go up to approximately 87 percent, however, this
phenomenon was due to the fact that the inference tended to classify everything
to the non-polyp category, and the non-polyp tiles were approximately 5 to 9
times more than the ones with polyp (of course, 5 belonged to the 70 × 70 tile
size, and 9 to the 20 × 20). Also the three colour channels were separated, as
the pit patterns were more visible in the blue and green channels, as well as the
vein patterns were more emphasized in the green channels.

We investigated the reason for this bad behaviour. First, we studied the
appearance of the images. There were images with clean, nice, clearly distin-
guishable bowel background, and sharp polyp edges, almost in focus, in some
cases excess liquid of yellowish colour, or whitish plaque was present, in one set
the colon was not cleaned beforehand, and in some cases the image was though
of a cleaned bowel with ideal condition, the camera became out of focus through-
out the whole process. There were multiply included pictures as well. In order
to determine for what type of images our method can be used, we grouped the



pictures into 18 groups, each belonging to the same polyp with similar condi-
tions, just the distance and the angle were different. As it can be seen in Fig. 2.1,
the groups had in some cases similar, some cases very different properties. Ve
determined the membership functions for both the images with polyp and for
those without by determining the minimum, maximum and mean values of the
given parameter of the given group. The results for a medium, 50 by 50 tile size
for the entropy dimensions are given in Fig. 2. In the figure the columns mean

Fig. 2. Membership functions for the 6 entropy based antecedent dimensions, for the
18 image groups, in case of tile size 50 by 50 pixels.

the colour channel, the first two rows are the membership functions of the struc-
tural entropy parameter for the case without polyp and with polyp. The second
two rows are the logarithms of the filling factor for no-polyp and polyp cases.
It can be seen that there are image groups where the membership functions of



the tiles with polyp are almost the same as the membership functions of the
ones without polyp, thus in these cases the structural entropy and filling factor
are not good candidates for searching for polyps. There are cases, when the two
antecedent sets are significantly different, but even in these cases the α = 1 cuts
are almost in the same place, thus classifying a tile into a ”non-polyp” class
is highly probable based on this dimension. Using subnormal fuzzy set for the
zero dimension might solve this problem, but selecting the value of the maximal
non-empty α cut is also a hard task.

Using all the mentioned antecedent dimensions, the mean, the standard de-
viation, the edge density and the localization parameters, we determined the
rulebases for all the 18 picture groups. Using all these rulebases the classifi-
cation for all the tiles in the test set was performed. The results are grouped
according to the previously selected image groups and plotted in the first column
of Fig. 3. The uppermost plot belongs to the general results, the second row be-
longs to only those image segments, where no polyps were present whereas the
las row belongs to the images with polyp. It can be seen, that the images with
polyp are still highly misclassified, especially in some cases (the most notable
one is the image series with not sufficient preparation of the patient). The cases,
where either the vein structure of the bowel wall, or the pit pattern of the polyp
is clearer, the classification goes the best.

As the area of the tiles is not fully covered by the polyps, the polyp covered
percentage is also calculated. The difference of the polyp coverage and the clas-
sification output is presented also in Fig. 3. It can be seen, that the success rate
increases significantly, especially in some cases it goes beyond 80 percent even in
case of the pictures with polyp, which means, that the wrongly classified images
contained mainly only in a small area polyps. The size of the

5 Conclusions

The first steps in selecting the antecedent dimensions of a novel colorectal polyp
detecting method was presented. All the dimensions are calculated on tiles of
the image of various sizes. The statistical parameters, such as mean, standard
deviation and edge density are significantly different either in the case of clear,
well prepared images, or in case of overly lighted polyps. In case of the clearly
visible structures, structural entropies are also good candidates for antecedent
dimensions. In case of dirty or off-focus images, clearly other antecedent dimen-
sions should be selected. We have also determined that from the several hundred
thousand image segments, mainly those were falsely classified that contained
polyp only in a small part of their area.
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Fig. 3. Misclassification rate of the rule bases for 70 by 70 tile size for the 18 groups of
images. Upper row shows the total misclassification rate, second row the cases without
polyp, whereas lower row gives the misclassification rate in case of image sections wit
polyp. The second columns shows the difference of the group the image was classified
into and the percentage of the area of the image section that is covered with polyp.
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Abstract. One of reasons for arising the statistical ambiguity is using
in the course of reasoning laws which have probabilistic, but not logical
justification. Carl Hempel supposed that one can avoid the statistical
ambiguity if we will use in the probabilistic reasoning maximal specific
probabilistic laws. In the present work we deal with laws of the form
ϕ ⇒ ψ, where ϕ and ψ are arbitrary propositional formulas. Given a
probability on the set of formulas we define the notion of a maximal
specific probabilistic law. Further, we define a prediction operator as
inference with the help of maximal specific laws and prove that applying
the prediction operator to some consistent set of formulas we obtain a
consistent set of consequences.

Keywords: probabilistic inference, maximal specificity, prediction, con-
sistency

1 Introduction

The statistical ambiguity problem arises due to using in the course of reasoning
laws which have a probabilistic, but not logical justification. Carl Hempel sup-
posed that one can avoid the statistical ambiguity if we will use in the probabilis-
tic reasoning only so called maximal specific probabilistic laws (see Section 2).
In the present work we deal with laws of the form ϕ ⇒ ψ, where ϕ and ψ are
arbitrary propositional formulas. In Section 3 we define the concept of probabil-
ity on the set of formulas close to that of [1, 10] and extend it to the family of
rules. Finally, in Section 4 we define the set of maximal specific probabilistic laws
and the prediction operator as an inference with the help of maximal specific
laws. Then we prove that applying the prediction operator to a consistent set of
formulas we obtain the set of sequences, which is consistent too.

Despite the explanation and the prediction have the same logical structure,
we prefer the term “prediction” in the following cases: if the act of prediction
precedes a predicted fact in time. We also speak on a prediction if a predicted
fact remains unknown due to different reasons: too high costs of establishing this
fact, an impossibility to establish the fact at the moment, the lack of this fact
in a series of preceding experiments, etc.



2 Statistical ambiguity and requirement of maximal
specificity

The Covering Law Model suggested by Carl Hempel [3] (see [4], and [9] for a his-
torical overview) distinguished two kinds of explanation: Deductive-Nomological
explanations (D-N explanations) and Inductive-Statistical explanations (I-S ex-
planations). A D-N argument is a standard logical inference of facts from other
facts with the help of general laws. An I-S argument has the form:

p(G;F ) = t
F (a)
G(a)

The line distinguishes the explanandum G(a) from two premisses (explanans),
one of which has the form of a statistical law of the form p(G;F ) = t, 0 ≤ t ≤ 1,
where t denotes the probability that an object from the set defined by predicate
F is also a member of the set defined by predicate G.

Right from the beginning it was clear to Hempel that two I-S explanations
can yield contradictory conclusions. He called this phenomenon the statistical
ambiguity of I-S explanations [4]. Recall one of traditional examples of the sta-
tistical ambiguity. Suppose that we have the following statements.

L1 Almost all cases of streptococcus infection clear up quickly after the admin-
istration of penicillin.

L2 Almost no cases of penicillin resistant streptococcus infection clear up quickly
after the administration of penicillin.

C1 Jane Jones had streptococcus infection.
C2 Jane Jones received treatment with penicillin.
C3 Jane Jones had a penicillin resistant streptococcus infection.

Following the above pattern one can construct two I-S explanations based
on these statements. On the base of L1 and C1∧C2 one can explain why Jane
Jones recovered quickly (E). The second argument with premisses L2 and C2∧C3
explains why Jane Jones did not (¬E). The set of premisses {C1, C2, C3} is con-
sistent. However, the conclusions contradict each other, making these arguments
rival ones.

Hempel hoped to solve this problem by forcing all statistical laws in an
argument to be maximally specific – they should contain all relevant information
with respect to the domain in question. In our example, then, the premiss C3
invalidates the first argument, since this argument is not maximally specific with
respect to all information about Jane Jones. So, we can only explain ¬E, but
not E.

In [4] Hempel defined the Requirement of Maximal Specificity (RMS) as
follows. An I-S argument

p(G;F ) = t
F (a)
G(a)



is an acceptable I-S explanation with respect to a “knowledge state” K, if the
following Requirement of Maximal Specificity is satisfied. For any predicate H
for which the following two sentences are contained in K: ∀x(H(x) ⇒ F (x)),
H(a), there exists a statistical law p(G;H) = t′ in K such that t = t′. The basic
idea of RMS is that if F and H both contain the object a, and H is a subset of
F , then H provides more specific information about the object a than F , and
therefore the law p(G;H) should be preferred over the law p(G;F ). However the
law p(G;H) has the same probability as the law p(G;F ).

In [8], Salmon says that the Requirement of Maximal Specificity guarantees
that all known relevant facts must be included in an adequate scientific expla-
nation, but there is no requirement to ensure that only relevant facts will be
included. Moreover, there are persuasive illustrations demonstrating that expla-
nations could satisfy Hempel’s criteria, yet not explain why their explanandum
events occur. For example,

(CE-1) John Jones was almost certain to recover from his cold within a week, be-
cause he took vitamin C, and almost all colds clear up within a week after
administration of vitamin C.

Most colds clear up within a week, with or without vitamin C. Therefore Salmon
[7] and Fetzer [2] define the Requirement of Strict Maximal Specificity. This con-
dition means that adequate explanations must refer to all and only statistically
relevant properties whose presence made a difference to the explanandum event
that is to be explained. More precisely, a factor C is statistically relevant to the
occurrence of B under circumstances A if and only if P (B/A&C) 6= P (B/A) [7].

3 Probability on propositional formulas and rules

Our attention will be restricted to propositional logic. We start from a set of
atoms At and construct from them the set of well formed formulas F (At) using
connectives ∧, ∨,→, ¬. As usual the equivalence↔ is considered as an abbrevi-
ation. We define > as ϕ ∨ ¬ϕ, where ϕ is some fixed formula. For a finite set of
formulas T the conjunction of its elements is denoted by

∧
T . By V (ϕ) we denote

the set of atoms occuring in formula ϕ. The set F (At) with naturally interpreted
connectives forms an algebra of formulas F(At). The classical interpretation of
propositional connectives is assumed, therefore models for our logic can be iden-
tified with mappings from At to the set of classical truth values {0, 1}. We call
such mappings (At-)valuations. Every valuation v : At → {0, 1} extends in a
standard way to the set F (At) using classical truth tables for connectives ∧, ∨,
→, and ¬, the extended valuation we denote in the same way v : F (At)→ {0, 1}.
A formula ϕ is satisfiable in a set G of valuations if v(ϕ) = 1 for some v ∈ G, a
formula ϕ holds on G, G |= ϕ, if v(ϕ) = 1 for all v ∈ G. Finally, a set T ⊆ F (At)
is G-consistent if there is v ∈ G such that v(ϕ) = 1 for all ϕ ∈ T .

Let G be a set of valuations. The relation ϕ ≡G ψ is defined by the condition
that ϕ ↔ ψ holds on G. It is clear that ≡G is a congruence on F(At), the
respective quotient is denoted as BG(At). The coset of ϕ w.r.t. ≡G is denoted



as [ϕ]G. Recall that the universe of BG(At) equals {[ϕ]G | ϕ ∈ F (At)} and that
this set is finite whenever At is finite. The operations of BG(At) are denoted
as ∧G, ∨G, →G, ¬G and the lattice order as vG. Recall that [ϕ]G vG [ψ]G iff
[ϕ]G = [ϕ ∧ ψ]G = [ϕ]G ∧G [ψ]G.

Let µ : 2G → [0, 1] be a finitely additive measure defined on G, i.e., µ is such
that: 1) µ(G) = 1; 2) µ(∅) = 0; and 3) µ(A1∪ . . .∪An) = µ(A1)∪ . . .∪µ(An) for
pairwise disjoint subsets A1, . . . , An ⊆ G. Additionally we assume that µ(A) =
0 iff A = ∅. Elements of G may be interpreted as outcomes of experiments.
Further, we assume that only essential experiments are included in G, which
explains why µ({v}) 6= 0 for all v ∈ G.

For every ϕ ∈ F (At), put ϕG := {v ∈ G | v(ϕ) = 1}. Now we define a
function ν : F (At)→ [0, 1] by the rule ν(ϕ) = µ(ϕG). It is easy to check that ν
satisfies the following properties.

1. ν(ϕ) = 1 iff ϕ is holds on G.
2. ν(ϕ) = 0 iff ϕ is not satisfiable on G.
3. ν(ϕ ∨ ψ) = ν(ϕ) + ν(ψ) iff ϕ ∧ ψ is not satisfiable in G.

This means that ν is a probability on the set of propositional formulas in a
sense close to that of [1, 10].

Now we generalize the notions from [11]. By a rule we mean a syntactic object
of the form

r = ϕ⇒ ψ,

where ϕ,ψ ∈ F (At) and V (ψ)\V (ϕ) 6= ∅. We call ϕ and ψ a body and a head of
r: ϕ = B(r) and ψ = H(r). The probability of a rule r = ϕ⇒ ψ with ν(ϕ) 6= 0

is defined as follows: ν(r) := ν(ψ|ϕ) = ν(ψ∧ϕ)
ν(ϕ) . In case, ϕ is not satisfiable on G,

the value ν(r) remains undefined. Notice that the value ν(r) was defined so that
it is smaller or equal to ν(ϕ→ ψ).

Definition 1. Let r1 and r2 be two rules with the same head, H(r1) = H(r2).
We call r2 a generalization of r1, symbolically r2 � r1 if B(r1)G ⊆ B(r2)G; rule
r2 is a proper generalization of r1, r2 � r1, if r2 � r1 and B(r1)G 6= B(r2)G.
We say in this case that r1 is a (proper) specialization of r2.

In other words, one of the two rules with the same head is a proper general-
ization of the other if its body is weaker from the logical point of view.

4 Prediction operator

In this section we generalize the results of [12]1. First, we introduce two special
sets of rules:

M1 = {r | (> ⇒ H(r)) � r implies ν(r) > ν(> ⇒ H(r))};
1 In [12], rules are of the form α1 ∧ . . .∧αn ⇒ β, where α1, . . . ,αn, β are literals, i.e.,

atoms or negations of atoms.



M2 = {r | r ∈ M1 and ∀r′ ∈ M1(r � r′ ⇒ ν(r′) ≤ ν(r))}.
Namely rules from M2 we consider as satisfying the Requirement of Strict

Maximal Specificity, because a specification of such rule by a rule from M1 does
not lead to an increase of probability, which means that for r ∈ M2, its body
contains all statistically relevant information for the prediction of H(r).

For a set of rules Π ⊆ M2 we define an operator of direct predictions:

PrΠ(T ) = T ∪ {H(r) | r ∈ Π, ∃ϕ1, ...ϕn ∈ T (G |= (ϕ1 ∧ . . . ∧ ϕn)↔ B(r))},

where T is a set of formulas. Further, we put:

Pr0Π(T ) = T, Prn+1
Π (T ) = PrΠ(PrnΠ(T )), PRΠ(T ) =

⋃

n∈ω
PrnΠ(T ).

It is clear that PRΠ(T ) is the least fixed point of the operator of direct predic-
tions containing T . We call PRΠ a prediction operator for Π.

Theorem 1. Let At be a finite set of atoms, Π ⊆ M2, and T ⊆ F (At). If T is
a G-consistent set of formulas, then PRΠ(T ) is G-consistent.

Proof. Obviously, it will be enough to check that the operator of direct predic-
tions produces a G-consistent set of formulas. Further, since At is finite, the
family of all formulas is finite up to equivalence, and we may assume that sets
T and Π are finite too.

Let Π ′ = {r0, . . . , rn} be the set of such rules r from Π that the equivalence
(ϕ1 ∧ . . . ∧ ϕn) ↔ B(r) holds on G for some ϕ1,. . . , ϕn ∈ T . We put T0 = T ,
Ti+1 = Ti ∪ {H(ri)}. Clearly, Tn = PrΠ(T ). Now we prove by induction that
every Ti is G-consistent.

Assume that Ti is G-consistent, but Ti+1 is not. Let ri = ϕ⇒ ψ. By definition
of Π ′ there are χ1, . . . , χn ∈ T such that (χ1 ∧ . . . ∧ χn) ↔ ϕ holds on G. Let
N = Ti \ {χ1, . . . χn}. Let us consider the rule s = ϕ∧¬(

∧
N)⇒ ψ and assume

that its body is G-consistent, i.e., ν(ϕ ∧ ¬(
∧
N)) 6= 0. In this case we have:

ν(s) =
ν(ϕ ∧ ¬(

∧
N) ∧ ψ)

ν(ϕ ∧ ¬(
∧
N))

=
ν(ϕ ∧ ψ)− ν(ϕ ∧∧N ∧ ψ)

ν(ϕ)− ν(ϕ ∧∧N)
.

We have G |= ∧Ti+1 ↔ (ϕ∧∧N ∧ψ) and G |= ∧Ti ↔ (ϕ∧∧N) by choice
of χ1, . . . , χn. Since by assumption ν(

∧
Ti+1) = 0 and ν(

∧
Ti) 6= 0, we conclude

that ν(ϕ ∧∧N ∧ ψ) = 0 and ν(ϕ ∧∧N) 6= 0. In this way, we have

ν(s) =
ν(ϕ ∧ ψ)

ν(ϕ)− ν(ϕ ∧∧N)
>
ν(ϕ ∧ ψ)

ν(ϕ)
= ν(ri).

Notice that ν(s) > ν(ri) and ri ∈ M1 imply s ∈ M1. On the other hand, from
ri ∈ M2 and ri � s we obtain ν(ri) ≥ ν(s). This contradiction proves that the
body of s is not G-consistent: ν(ϕ ∧ ¬(

∧
N)) = 0. As a consequence we obtain

ν(ϕ ∧ ¬(
∧
N) ∧ ψ) = 0. Now we have:

ν(ϕ ∧ ψ) = ν(ϕ ∧ ψ)− ν(ϕ ∧ ¬(
∧
N) ∧ ψ) = ν(ϕ ∧

∧
N ∧ ψ) = 0.



Thus, ν(ri) = 0. At the same time ri ∈ M1, which implies 0 = ν(ri) > ν(> ⇒
ψ) ≥ 0. The obtained contradiction concludes the proof.

Thus, the suggested formalization of the Requirement of Strict Maximal
Specificity provides an approach to solving the statistical ambiguity problem.

Of course, we worked in the ideal situation assuming that the probability on
the set of formulas is known. In reality we have only statistical approximation of
probabilities. The concept of semantical probabilistic inference (see [11]) aided
at the search for maximal specific rules (of the form

∧n
i=1 αi ⇒ β, where αi

and β are literals) on the base of statistically verified data gives a well-working
approximation of M2-rules. This search procedure was realized in the program
system Discovery [5]. The description of applications of this system to financial
forecasting and to medicine can be found in [5] and [6].
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Abstract. The unfolding transformation has been widely used in many
declarative frameworks for improving the efficiency of programs after ap-
plying computational steps on their rules. In this paper we apply such op-
eration to a symbolic extension of a powerful fuzzy logic language where
program rules extend the classical notion of clause by adding concrete
and “symbolic” fuzzy connectives and truth degrees on their bodies.

Keywords: Fuzzy Logic Programming, Symbolic Programs, Unfolding

1 Introduction

During the last decades, several fuzzy logic programming systems have been
developed. Here, essentially, the classical SLD resolution principle of logic pro-
gramming has been replaced by a fuzzy variant with the aim of dealing with
partial truth and reasoning with uncertainty in a natural way. Most of these
systems implement (extended versions of) the resolution principle introduced by
Lee [9], such as Elf-Prolog [3], F-Prolog [10], Fril [1], MALP [11], and FASILL [7].

In this paper we focus on the so-called multi-adjoint logic programming ap-
proach MALP [11], a powerful and promising approach in the area of fuzzy logic
programming. When specifying a MALP or any other fuzzy logic program manag-
ing fuzzy connectives and truth degrees beyond the simpler case of {true, false},
it might sometimes be difficult to assign weights—truth degrees—to program
rules, as well as to determine the right connectives. This is a common problem
with fuzzy control system design, where some trial-and-error is often necessary.
In our context, a programmer can develop a prototype and repeatedly execute it
until the set of answers is the intended one. Unfortunately, this is a tedious and
time consuming operation. Actually, it might be impractical when the program
should correctly model a large number of test cases provided by the user. In order
to overcome this drawback, in [13, 14] we have recently introduced a symbolic
extension of MALP programs called symbolic multi-adjoint logic programming
(sMALP).

? This work has been partially supported by the EU (FEDER), the State Research
Agency (AEI) and the Spanish Ministerio de Economı́a y Competitividad under
grant TIN2016-76843-C4-2-R (AEI/FEDER, UE).



Fig. 1. Screenshot of the online tool for tuning sMALP programs.

Here, we can write rules containing symbolic truth degrees and symbolic con-
nectives, i.e., connectives which are not defined on its associated multi-adjoint
lattice. In order to evaluate these programs, we consider a symbolic operational
semantics that delays the evaluation of symbolic expressions [13, 14]. Therefore,
a symbolic answer could now include symbolic (unknown) truth values and con-
nectives. The approach is correct in the sense that using the symbolic semantics
and then replacing the unknown values and connectives by concrete ones gives
the same result as replacing these values and connectives in the original sMALP
program and, then, applying the concrete semantics on the resulting MALP pro-
gram. Furthermore, in [13, 14] we show how sMALP programs can be used to
tune a program w.r.t. a given set of test cases, thus easing what is considered
the most difficult part of the process: the specification of the right weights and
connectives for each rule. Figure 1 mirrors the online implementation of this
technique, which is freely available from http://dectau.uclm.es/tuning/.

The structure of this paper is as follows. After introducing in Section 2 the
syntax of the framework of symbolic multi-adjoint logic programming, Section 3
focuses on the unfolding transformation we have specially tailored for this kind
of fuzzy programs. We show that the formulation of this semantics preserving
operation –which is initially devoted to produce more efficient code– strongly de-
pends on the operational semantics formally defined for the framework. Finally,
Section 4 concludes and points out some directions for further research.
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2 Symbolic Multi-adjoint Logic Programs

We assume the existence of a multi-adjoint lattice 〈L,�,&1,←1, . . . ,&n,←n〉,
equipped with a collection of adjoint pairs 〈&i,←i〉—where each &i is a con-
junctor which is intended to be used for the evaluation of modus ponens [11]—.
For instance and as shown in Figure 2, we have typically several adjoint pairs
over real numbers in the unit interval belonging to the well-known  Lukasiewicz’s
logic 〈&L,←L〉, Gödel’s logic 〈&G,←G〉 and product’s logic 〈&P,←P〉, which might
be used for modeling pessimist, optimist and realistic scenarios, respectively.

&P(x, y) , x ∗ y ←P (x, y) ,
{

1 if y ≤ x
x/y if 0 < x < y

Product logic

&G(x, y) , min(x, y) ←G (x, y) ,
{

1 if y ≤ x
x otherwise

Gödel logic

&L(x, y) , max(0, x+ y − 1) ←L (x, y) , min(x− y + 1, 1)  Lukasiewicz logic

Fig. 2. Adjoint pairs of three standard fuzzy logics over 〈[0, 1],≤〉.

In addition, on each program rule, we can have a different adjoint implication
(←i), conjunctions (denoted by ∧1,∧2, . . .), adjoint conjunctions (&1,&2, . . . ),
disjunctions (|1, |2, . . .), and other operators called aggregators (usually denoted
by @1,@2, . . .); see [15] for more details. More exactly, a multi-adjoint lattice
fulfills the following properties:

– 〈L,�〉 is a (bounded) complete lattice.
– For each truth function of &i, an increase in any of the arguments results in

an increase of the result (they are increasing).
– For each truth function of ←i, the result increases as the first argument

increases, but it decreases as the second argument increases (they are in-
creasing in the consequent and decreasing in the antecedent).

– 〈&i,←i〉 is an adjoint pair in 〈L,�〉, namely, for any x, y, z ∈ L, we have
that: x � (y ←i z) if and only if (x&i z) � y.

In this work, given a multi-adjoint lattice L, we consider a first order language
LL built upon a signature ΣL, that contains the elements of a countably infi-
nite set of variables V, function and predicate symbols (denoted by F and Π,
respectively) with an associated arity—usually expressed as pairs f/n or p/n,
respectively, where n represents its arity—, and the truth degree literals ΣT

L and
connectives ΣC

L from L. Therefore, a well-formed formula in LL can be either:

– A value v ∈ ΣT
L , interpreted as itself, i.e., as the truth degree v ∈ L.

– p(t1, . . . , tn), if t1, . . . , tn are terms over V ∪F and p/n is an n-ary predicate.
This formula is called atomic (atom, for short).

– ζ(e1, . . . , en), if e1, . . . , en are well-formed formulas and ζ is an n-ary con-
nective with truth function [[ζ]] : Ln 7→ L.
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As usual, a substitution σ is a mapping from variables from V to terms over
V ∪ F such that Dom(σ) = {x ∈ V | x 6= σ(x)} is its domain. Substitutions are
usually denoted by sets of mappings like, e.g., {x1/t1, . . . , xn/tn}. Substitutions
are extended to morphisms from terms to terms in the natural way. The identity
substitution is denoted by id. The composition of substitutions is denoted by
juxtaposition, i.e., σθ denotes a substitution δ such that δ(x) = θ(σ(x)) for all
x ∈ V.

A MALP rule over a multi-adjoint lattice L is a formula H ←i B, where H
is an atomic formula (usually called the head of the rule), ←i is an implication
symbol belonging to some adjoint pair of L, and B (which is called the body of
the rule) is a well-formed formula over L without implications. A goal is a body
submitted as a query to the system. A MALP program is a set of expressions
R with v, where R is a rule and v is a truth degree (a value of L) expressing the
confidence of a programmer in the truth of rule R. By abuse of the language,
we often refer to R with v as a rule (see, e.g., [11] for a complete formulation of
the MALP framework).

We are now ready for summarizing the symbolic extension of multi-adjoint
logic programming initially presented in [13] where, in essence, we allow some
undefined values (truth degrees) and connectives in the program rules, so that
these elements can be systematically computed afterwards. In the following, we
will use the abbreviation sMALP to refer to programs belonging to this setting.

Here, given a multi-adjoint lattice L, we consider an augmented language
LsL ⊇ LL which may also include a number of symbolic values, symbolic adjoint
pairs and symbolic connectives which do not belong to L. Symbolic objects are
usually denoted as os with a superscript s and, in our online tool, their identifiers
always start with #.

Definition 1 (sMALP program). Let L be a multi-adjoint lattice. An sMALP
program over L is a set of symbolic rules, where each symbolic rule is a formula
(H ←i B with v), where the following conditions hold:

– H is an atomic formula of LL (the head of the rule);
– ←i is a (possibly symbolic) implication from either a symbolic adjoint pair
〈&s,←s〉 or from an adjoint pair of L;

– B (the body of the rule) is a symbolic goal, i.e., a well-formed formula of LsL;
– v is either a truth degree (a value of L) or a symbolic value.

Example 1. Figure 3 displays an sMALP program. Here, we consider a travel
agency that offers booking services on three hotels, named sun, sweet and lux,
where each one of them is featured by three factors: the hotel facilities, the con-
venience of its location, and the rates, denoted by predicates facilities, location
and rates, respectively. Here, we assume that all weights can be easily obtained
except for the weight of the fact facilities(sun), which is unknown, so we in-
troduce a symbolic weight #s3. Also, the programmer has some doubts on the
connectives used in the first rule, so she introduces two symbolic connectives,
i.e., the implication and disjunction symbols #<s1 and #|s2.
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Fig. 3. Example of an sMALP program loaded into the FLOPER system.

3 Running and Unfolding Symbolic Programs

The procedural semantics of sMALP is defined in a stepwise manner as follows.
First, an operational stage –based on admissible steps, as described in Definition
2– is introduced which proceeds similarly to SLD resolution in pure logic pro-
gramming. In contrast to standard logic programming, though, our operational
stage returns an expression still containing a number of (possibly symbolic) val-
ues and connectives. Then, an interpretive stage –based on interpretive steps ac-
cording to Definition 4– evaluates these connectives and produces a final answer
possibly containing symbolic values and connectives. The procedural semantics
of both MALP and sMALP programs is based on a similar scheme. The main
difference is that, for MALP programs, the interpretive stage always returns a
value, while for sMALP programs we might get an expression containing symbolic
values and connectives that should be first instantiated in order to compute a
final value.

In the following, C[A] denotes a formula where A is a sub-expression which
occurs in the—possibly empty—context C[]. Moreover, C[A/A′] means the re-
placement of A by A′ in context C[], whereas Var(s) refers to the set of distinct
variables occurring in the syntactic object s, and θ[Var(s)] denotes the substi-
tution obtained from θ by restricting its domain to Var(s). An sMALP state has
the form 〈Q;σ〉 where Q is a symbolic goal and σ is a substitution. We let Es
denote the set of all possible sMALP states.

Definition 2 (admissible step). Let L be a multi-adjoint lattice and P an
sMALP program over L. An admissible step is formalized as a state transition
system, whose transition relation →AS ⊆ (Es × Es) is the smallest relation
satisfying the following transition rules:3

1. 〈Q[A];σ〉 →AS 〈(Q[A/v&iB])θ;σθ〉,
if θ = mgu({H = A}) 6= fail, (H ←i B with v)<<P and B is not empty.4

2. 〈Q[A];σ〉 →AS 〈(Q[A/⊥]);σ〉,
if there is no rule (H ←i B with v)<<P such that mgu({H = A}) 6= fail.

3 Here, we assume that A in Q[A] is the selected atom. Furthermore, as it is common
practice, mgu(E) denotes the most general unifier of the set of equations E [8].

4 For simplicity, we consider that facts (H with v) are seen as rules of the form
(H←i> with v) for some implication ←i. Furthermore, in this case, we directly
derive the state 〈(Q[A/v])θ;σθ〉 since v &i> = v for all &i.
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Here, (H ←i B with v)<<P denotes that (H ←i B with v) is a renamed apart
variant of a rule in P (i.e., all its variables are fresh). Note that symbolic values
and connectives are not renamed.

Observe that the second rule is needed to cope with expressions like
@aver(p(a), 0.8), which can be evaluated successfully even when there is no rule
matching p(a) since @aver(0, 0.8) = 0.4. We sometimes call failure steps to this
kind of admissible steps because a pure logic language like Prolog would fail on
such situations.

Given a relation → we denote by →∗ its reflexive and transitive closure.
Also, an Ls-expression is now a well-formed formula of LsL which is composed
by values and connectives from L as well as by symbolic values and connectives.

Definition 3 (admissible derivation). Let L be a multi-adjoint lattice and
P be an sMALP program over L. Given a goal Q, an admissible derivation is
a sequence 〈Q; id〉 →∗AS 〈Q′; θ〉. When Q′ is an Ls-expression, the derivation
is called final and the pair 〈Q′;σ〉, where σ = θ[Var(Q)], is called a symbolic
admissible computed answer (saca, for short) for goal Q in P.

Example 2. Consider again the multi-adjoint lattice L and the sMALP program
P of Example 1. Here, we have the following final admissible derivation for goal
popularity(X) in P (the selected atom is underlined):

〈popularity(X); id〉 →AS

〈#&s1(0.9,#|s2(facilities(X),@aver(location(X), rates(X)))); {X1/X}〉 →AS

〈#&s1(0.9,#|s2(#s3,@aver(location(sun), rates(sun)))); {X/sun,X1/sun}〉 →AS

〈#&s1(0.9,#|s2(#s3,@aver(0.4, rates(sun)))); {X/sun,X1/sun}〉 →AS

〈#&s1(0.9,#|s2(#s3,@aver(0.4, 0.7))); {X/sun,X1/sun}〉

Hence, the associated saca is 〈#&s1(0.9,#|s2(#s3,@aver(0.4, 0.7))); {X/sun}〉.

Given a goal Q and a final admissible derivation 〈Q; id〉 →∗AS 〈Q′;σ〉, we have
that Q′ does not contain atomic formulas. Now, Q′ can be solved by using the
following interpretive stage:

Definition 4 (interpretive step). Let L be a multi-adjoint lattice and P be an
sMALP program over L. Given a saca 〈Q;σ〉, the interpretive stage is formalized
by means of the following transition relation →IS⊆ (Es × Es), which is defined
as the least transition relation satisfying:

〈Q[ζ(r1, . . . , rn)];σ〉 →IS 〈Q[ζ(r1, . . . , rn)/rn+1];σ〉

where ζ denotes a connective defined on L and [[ζ]](r1, . . . , rn) = rn+1.
An interpretive derivation of the form 〈Q;σ〉 →∗IS 〈Q′; θ〉 such that 〈Q′; θ〉

cannot be further reduced, is called a final interpretive derivation. In this case,
〈Q′; θ〉 is called a symbolic fuzzy computed answer (sfca, for short). Also, if Q′
is a value of L, we say that 〈Q′; θ〉 is a fuzzy computed answer (fca, for short).
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Example 3. Given the saca of Example 2, we have the following final interpretive
derivation (the connective reduced is underlined):

〈#&s1(0.9,#|s2(#s3,@aver(0.4, 0.7))); {X/sun}〉 →IS

〈#&s1(0.9,#|s2(#s3, 0.55)); {X/sun}〉
with [[@aver]](0.4, 0.7) = 0.55. Therefore, 〈#&s1(0.9,#|s2(#s3, 0.55)); {X/sun}〉
is a sfca of popularity(X) in P since it cannot be further reduced.

On the other hand, unfolding is a well-known, widely used, semantics-preserving
program transformation rule. The fold/unfold transformation approach was first
introduced in [2] to optimize functional programs and then used for logic pro-
grams [17]. In essence, unfolding is usually based on the application of opera-
tional steps on the body of program rules [16]. The unfolding transformation
is able to improve programs, generating more efficient code. Unfolding is the
basis for developing sophisticated and powerful programming tools, such as
fold/unfold transformation systems or partial evaluators, etc. Although in [4, 5]
we successfully adapted such operation to MALP programs, there are not prece-
dents coping with its symbolic extension, which motivates the present work.

Definition 5 (Symbolic Unfolding). Let P be an sMALP program and let
R : A ← B ∈ P be a program rule with no empty body. Then, the symbolic
unfolding of rule R in program P is the new sMALP program P ′ = (P − {R}) ∪
{Aσ ← B′ | 〈B; id〉 → 〈B′;σ〉}.
Example 4. Considering again the sMALP program of Example 1, if we unfold
its first rule (with selected atom facilities(X)) by applying a→AS step with the
three facts defining predicate facilities, we replace it with these three new rules:

popularity(sun) #←s1 #|s2(#s3 ,@aver(location(sun), rates(sun))) with 0.9
popularity(sweet) #←s1 #|s2(0.5,@aver(location(sweet), rates(sweet))) with 0.9
popularity(lux) #←s1 #|s2(0.9,@aver(location(lux), rates(lux))) with 0.9

and it is easy to see that the new program produces the same set of s.f.c.a.’s for a
given goal but reducing the length of derivations. We are nowadays identifying a
set of sufficient conditions allowing us to prove the soundness and completeness
properties of symbolic unfolding.

4 Conclusions and Future Work

In this work we have focused on a preliminary formulation of an unfolding trans-
formation for optimizing sMALP programs. In contrast with other precedent
fuzzy languages like MALP, the treatment of symbolic constants added to this
extended framework introduces several risks for preserving the correctness of
the transformation that we are proving nowadays. Moreover, since the sMALP
language was initially conceived for tuning fuzzy logic programs, in the future
we plan to explore the synergies between this technique and the unfolding trans-
formation described in this paper. Finally, we also wish to manage similarity
relations as recently done in [12] with the FASILL language (which represents a
non-symbolic extension of MALP using unification by similarity[6, 7]).
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Abstract. The representation of a logic program by a graph is a useful
procedure in order to obtain interesting properties of the program and
in the computation of the least model, when it exists. In this paper, we
consider hypergraphs for representing multi-adjoint logic programs and,
based on this representation, the hypotheses of an interesting termination
result have been weakened.

1 Introduction

One of the most important problems in logic programming with non-decreasing
operators is the computation of the least model of a given program. In order to
obtain such a model the fix-point semantics is usually considered. This semantics
is based on the iteration of the immediate consequence operator from the least
interpretation. Since this iteration can be infinite, one important goal is to get
termination properties of this iteration. In [3, 4], different termination theorems
were introduced in the multi-adjoint logic programming. This logic programming
framework was introduced in [10] as a generalization of different non-classical
logic programming frameworks, such as the residuated logic programming [5]
and the fuzzy logic programming framework presented in [11].

This paper considers directed hypergraphs [1, 7] in order to represent a multi-
adjoint logic program and, based on this representation, introduce a termination
result, which generalizes one of the most important termination theorems given
in [4].

2 Basic definitions on hypergraphs

This section recalls the notions we will need throughout the paper related to
hypergraphs. For basic notions of graph theory see [2].

A graph is a pair of sets (V,E). V is the set of vertices or nodes. E is a set of
2-element subsets of V, named edges. The edges may be directed or undirected
(the pairs are ordered or not). Directed edges are called arcs. A cycle in a graph
is a path of edges and vertices wherein a vertex is reachable from itselif. I.e.,



a ordered set of vertices {u1, . . . , ui, . . . up} such that uiui+1 is an edge of the
graph and u1 = up.

The first notion for hypergraphs is the definition, which is a generalization
of a graph in which an edge is a non-empty subset of vertices. Specifically, a
hypergraph H is a pair H = (V,E) where V is a set of elements called nodes or
vertices, and E is a set of non-empty subsets of V called hyperedges or edges,
see [2] for more details. Therefore, E is a subset of P(V ) \ {∅}, where P(V )
is the power set of V . Note that, when the cardinal of all hyperedges is 2, the
hypergraph is a standard graph.

The generalization of a directed graph is called directed hypergraph and
contains directed hyperedges. A directed hyperedge or hyperarc is an ordered
pair, e = (X,Y ), of (possibly empty) disjoint subsets of vertices; X is called the
tail of e and Y is its head. From now on, the tail and the head of an hyperarc e
will be denoted by T (e) and H(e), respectively.

Hence, a directed hypergraph is a hypergraph with directed hyperedges [1, 7].
A backward hyperarc, or simply B-arc, is a hyperarc e = (T (e), H(e)), where the
head exactly has one vertex. When all the hyperarcs of a hypergraph are B-arcs,
then the hypergraph is called B-graph (or B-hypergraph) [7]. For example, the
hypergraph H = (V,E) introduced on the left of Figure 1, where V = {a, b, c, d}
and E = {({a}, {b}), ({b, c}, {a}), ({c, d}, {a})} is a B-graph. This paper will
only consider this kind of hypergraphs.

b

c

d

a

b

c

d

a

Fig. 1. Left: Example of B-graph H = (V,E). Right: Directed graph subjacent to H.

B-graphs (and the dually defined F-graphs) are a useful tool in different
applications [1, 7, 9]. As a consequence, they have been introduced many times
in the literature with various names. For example, the labelled graphs, used in [6,
8] to represent Horn formulae, are B-graphs.

In contrast with ordinary graphs for which there is a single natural notion of
cycles and acyclic graphs, there are multiple natural non-equivalent definitions
of acyclicity for hypergraphs which collapse to ordinary graph acyclicity for the
special case of ordinary graphs.

In this paper, we only need to consider the cycles on the subjacent directed
graph of a B-graph. Given any directed hypergraph H = (V,E), the subjacent
directed graph G(H) = (V (G), E(G)) has the same nodes that H, i.e. V (G) = V
and an arc exists in E(G) from the node u to the node v if and only if it exists a
hyperedge e ∈ E such that u ∈ T (e) and v ∈ H(e). For example, Figure 1 shows
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on the right the subjacent graph to the hypergraph on the left. The vertices a
and b form a cycle in that graph, but the hypergraph has not hypercycles under
the common definitions [2].

3 Multi-adjoint logic programming

This section recalls the algebraic structure considered in this framework, the no-
tion of multi-adjoint logic program, and one of the most interesting termination
theorems introduced in [4]. The basic operators considered in this framework are
adjoint pairs.

Definition 1. Given a partially ordered set (P,≤), the pair (& ,←) is an adjoint
pair with respect to (P,≤) if the mappings & ,← : P × P → P satisfy that:

1. & is order-preserving in both arguments.
2. ← is order-preserving in the first argument (the consequent) and order-

reversing in the second argument (the antecedent).
3. The equivalence x ≤y ← z if and only if x& z≤ y holds, for all x, y, z ∈ P .

The algebraic structure considered in this logic programming framework is
called multi-adjoint lattice.

Definition 2. A multi-adjoint lattice is a tuple (L,�,←1,&1, . . . ,←n,&n) ver-
ifying the following properties:

1. (L,�) is bounded lattice, i.e. it has bottom (⊥) and top (>) elements;
2. (&i,←i) is an adjoint pair in (L,�), for all i ∈ {1, . . . , n};
3. >&i ϑ = ϑ&i> = ϑ, for all ϑ ∈ L and for all i ∈ {1, . . . , n}.

Given a multi-adjoint lattice, a set of propositional symbols Π, a given lan-
guage denoted as F and different monotonic operators defined on L, the notion
of program (set of rules) is introduced in this framework.

Definition 3. Given a multi-adjoint lattice (L,�,←1,&1, . . . ,←n,&n). A multi-
adjoint logic program P is a set of rules of the form 〈(A←i B), ϑ〉 such that:

1. The rule (A←i B) is a formula of F;
2. The confidence factor ϑ is an element (a truth-value) of L;
3. The head of the rule A is a propositional symbol of Π.
4. The body formula B is a formula of F built from propositional symbols

B1, . . . , Bn (n ≥ 0) by the use of conjunctors &1, . . . ,&n and ∧1, . . . ,∧k,
disjunctors ∨1, . . . ,∨l, aggregators @1, . . . ,@m and elements of L.

5. Facts are rules with body >.

This paper will be focused on one of the most important theorems introduced
in [4]. Before recalling this result we need different definitions.

Definition 4. Let P be a multi-adjoint program, and A ∈ Π. The set RIP(A) of
relevant values for A with respect to an interpretation I is the set of maximal
values of the set {ϑ&iÎ(B) | 〈A←i B, ϑ〉 ∈ P}.

5



The immediate consequences operator, given by van Emden and Kowalski,
is defined in this framework as follows.

Definition 5. Given a multi-adjoint logic program P. The immediate conse-
quences operator TP maps interpretations to interpretations, and for an inter-
pretation I and an arbitrary propositional symbol A is defined by

TP(I)(A) = sup{ϑ&iÎ(B) | 〈A←i B, ϑ〉 ∈ P}

The main feature of TP is that its least fix-point coincides with the least
model of the program P [10]. Since the least fix-point is computed iterating the
TP operator from the least interpretation, ∆, it is important to know when this
iteration finishes in a finite number of steps.

The termination theorem in [4] was introduced for sorted and local multi-
adjoint logic programs. In order to simplify the notation, we have adapted it for
(uni-sorted) multi-adjoint logic programs.

Theorem 1. Given a multi-adjoint logic program P with finite dependences and
where the operators @: Lm → L in the body of the rules satisfy the boundary
condition with the > element, that is,

@(>, . . . ,>︸ ︷︷ ︸
k

, x,>, . . . ,>︸ ︷︷ ︸
m−k−1

) � x

for all x ∈ L. If for every iteration n and propositional symbol A the set of
relevant values for A with respect to TnP (M) is a singleton, then TP terminates
for every query.

This result will be weakened in the following section.

4 Representing programs by hypergraphs

This section presents a simple example which does not satisfy the hypotheses of
Theorem 1, but the least model of the program is obtained after finitely many
iterations. Then, in order to extend this result to a bigger number of programs,
a straightforward mechanism for representing a logic program by a B-graph is
introduced. Finally, based on this representation, the hypotheses of Theorem 1
will be weakened.

Example 1. Consider the following program P:

〈a←P b &G c, 0.8〉
〈a←P @(d, c), 1.0〉

〈b←P a, 0.7〉
〈c←P 1.0, 1.0〉
〈a←P 1.0, 0.5〉

where the aggregator @: [0, 1] × [0, 1] → [0, 1] is the weighted sum defined as
@(x, y) = (x+ 3y)/4, for all x, y ∈ [0, 1].

Although the minimum operator &G satisfies the boundary condition with
the 1 element (hypothesis in Theorem 1), the aggregator @ does not verify it
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and so, we cannot apply this theorem in order to know whether the computation
of the least model terminates in a finite number of iterations. However, in this
case, only 3 iterations are needed, as we show below:

a b c d
TP0 = 0.0 0.0 0.0 0.0
TP1 = 0.75 0.0 1.0 0.0
TP2 = 0.75 0.525 1.0 0.0
TP3 = 0.75 0.525 1.0 0.0

This example shows that the hypotheses in Theorem 1 should be weakened.
For that, we will represent a program by a B-graph and we will relate the ter-
mination of the iterations to the existence of cycles in the subjacent directed
graph and whether aggregator operators, which do not satisfy the hypotheses of
the theorem, are involved in these cycles.

Note that, it has been possible to compute the least model in a finite number
of iterations because the aggregator operator @ is not in a cycle of the subjacent
digraph of the associated B-graph.

The associated B-graph HP associated with a program P is constructed as
follows: the vertex set of the hypergraph is the propositional symbol set Π
of the program. Hence, for the program P in Example 1, we have V (HP) =
{a, b, c, d}. One hyperarc will be obtained from each rule as follows: Given a rule,
the propositional symbols of the antecedent of the rule will be the tail T (e) of
the associated hyperarc and the propositional symbol of the head of the rule will
be the only element of the head H(e) of the associated hyperarc. This hyperarc
is labeled with the aggregator in the body of the rule. When no aggregator
operator appears in the body of the rule, we will consider the identity mapping.
For example, from the rule 〈a←P b &G c, 0.8〉 for the program P in Example 1,
we obtain the hyperarc ({b, c}, {a}) with the label &G. Due to the considered
mechanism, the hypergraph resultant is always a (labelled) B-graph. Figure 2
(left) shows the associated B-graph of the program P given in Example 1.

b

c

d

a&G

@

Id

b

c

d

a
&G

@

@

&
G

Id

Fig. 2. Left: (Labelled) B-graph associated with the program given in Example 1.
Right: (Labelled) Subjacent directed graph from the B-graph on the left.

Finally, a weak version of Theorem 1 is introduced:
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Theorem 2. Given a multi-adjoint logic program P with finite dependences and
the B-graph HP associated with P. If the operators involved in the cycles of the
subjacent directed graph of HP satisfy the boundary condition with the > element
and, for every iteration n and propositional symbol A, the set of relevant values
for A with respect to TnP (M) is a singleton, then TP terminates for every query.

Note that this result only needs that the aggregators operators involved in
the cycles of the subjacent directed graph of the B-graph associated with the
program satisfy the boundary condition. Therefore, this result is notably more
general than Theorem 1 and can be applied, for example, to the program given
in Example 1.

5 Conclusions and future work

This paper has presented a procedure in order to represent a multi-adjoint logic
program as a hypergraph. As a first consequence, we have generalized one of the
most important termination results introduced in [4]. This representation will
provide more interesting properties in the future. We will study other efficient
termination results and we will analyze analogies between different notions in
logic programming and in graph theory in order to create synergies between both
theories. The obtained results will also be compared with the existent ones in
the literature.
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Abstract. Fuzzy Cognitive Map (FCMs) is an appropriate tool to describe, qual-
itatively analyze or simulate the behavior of complex systems. FCMs are bipolar 
fuzzy graphs: their building blocks are the concepts and the arcs. Concepts rep-
resent the most important components of the system, the weighted arcs define the 
strength and direction of cause-effect relationships among them. 

FCMs are created by experts in several cases. Despite the best intention the 
models may contain subjective information even if it was created by multiple 
experts. An inaccurate model may lead to misleading results, therefore it should 
be further analyzed before usage. Our method is able to automatically modify the 
connection weights and to test the effect of these changes. This way the hidden 
behavior of the model and the most influencing concepts can be mapped. Using 
the results the experts may modify the original model in order to achieve their 
goal. 

In this paper the internal operation of a department of a bank is modeled by 
FCM. The authors show how the modification of the connection weights affect 
the operation of the institute. This way it is easier to understand the working of 
the bank, and the most threatening dangers of the system getting into an unstable 
(chaotic or cyclic state) can be identified and timely preparations become possi-
ble. 

Keywords: banking, fuzzy cognitive maps, model uncertainty, multiobjective 
optimization, Bacterial Evolutionary Algorithm. 

1 Introduction 

Fuzzy Cognitive Maps (FCM) are suitable to describe complex systems for decision 
makers. The models include the most important system components and the direction 
and strength of relationships among them. There are numerous papers in the literature 



dealing with how to establish models and how to perform simulations with them to 
support decision making tasks (e.g. [1]). The internal operation of a bank is described 
and analyzed in this paper with FCM. The behavioral uncertainty and stability of the 
model were also investigated. The applied method [2] examines the effect of small 
changes of weight on model behavior. At least two good reasons exists why such an 
analysis is worth performing. 

The original model was provided by experts, and according to our experience the 
connection matrix provided by humans is sometimes not perfect. It is not surprising 
that it is sometimes not easy to define the weight of a connection between two compo-
nents. Even if they do their best, the number of connections is commensurate with the 
square of the number of components. In our case the investigated system had 13 com-
ponents, thus the number of connections can theoretically be up to 156. In general, it is 
very hard to see the investigated system as a whole with all its details and to choose 
appropriate weights to represent the real relationships well. If these weights are not 
properly estimated, the simulation of the system will lead to outcomes that may never 
occur under real circumstances. 

Even if the weights are defined properly the results of this paper may be interesting, 
because this way a more complete understanding of the model behavior can be ob-
tained. This knowledge may lead to a modified model that eventuates better operation, 
helps exploring the effects that may jeopardize the operation of the system, etc. 

The next section describes briefly the theoretical background of the applied methods, 
including FCMs in general and the method of uncertainty analysis which is used to find 
the most interesting, slightly modified model versions. It is followed by the analysis 
and modeling results of the banking system. Finally, the directions of further improve-
ments and conclusions are summarized. 

2 A short overview of Fuzzy Cognitive Maps 

Axelrod [3] suggested first the use of cognitive maps to support decision making in 
politics. This idea was later extended to Fuzzy Cognitive Maps (FCMs) by Kosko [4, 
5]. FCMs are directed, bipolar fuzzy graphs [6]. The nodes of this structure represent 
the main components of a system, and are usually called ‘concepts’. Their values, which 
fall into the unit interval [0, 1] [7], express the current state of a component (e.g. a 
partially opened tap) [8]. The arcs among concepts represent the relationships in the 
system. The weights assigned to the arcs falls in the [-1, 1] interval, where the sign of 
weights define the direction (amplifying, suppressing), and the absolute value of it the 
strength of the connection. 

FCMs are often visualized by a graph or described by the connection matrix which 
contains the weights of arcs. According to Kosko’s original idea, self-loops are not 
allowed, therefore the main diagonal of the matrix contains only zeros. 

The most important capability of FCMs is that simulations can be performed with 
them in order to predict the future states of the system. If the initial values of concepts 
are known and also the connection weights are given, the next state of the model can 
be calculated by Eq. (1). 



 

௜ܣ 
(௧ାଵ) = 	݂ ቀ∑ ௝௜ெݓ

௝ୀଵ ௝ܣ
(௧) + ௜ܣ

(௧)ቁ , ݅ ≠ ݆ (1) 

In the equation ܣ௜
(௧) represents the value of concept i at time t (also called ‘activation’ 

value), ݓ௝௜ is the weight of the directed arc between concepts j and i, M is the number 
of concepts and f is the threshold function. 

We note here that several alternative equations are used besides (1), which alterna-
tives were first proposed in [9]. This version was chosen in this paper because it also 
uses the current value of the concept when calculating the next value. It means that 
concepts have a ‘memory’, and it affects their future states. This behavior is very com-
mon in real systems. 

The role of the threshold function is to keep the activation values in the allowed 
range. Several versions of this function are described in the literature [7], but only one 
of them, the most popular one, namely the sigmoidal function (2) was applied. 

 ݂ = ଵ
ଵା௘షഊೣ

 (2) 

The function has a λ parameter that defines the steepness. The value of λ =5 is often 
used in literature, and thus it was chosen by the authors as well. It must be noted how-
ever that this parameter value may change the results considerably, and the effect of 
different values should be further analyzed in the future. A simulation may end up in 
three different ways [7]: 

1. Generally the values of concepts converge to a final, stable value in a dozen 
discrete time steps. The final vectors of concept values are called the ‘fixed 
point attractors’. 

2. Sometimes a series of n state vectors appears repeatedly after a specific 
time step of the simulation, which is called a ‘limit cycle’. 

3. The last possible outcome is, when the values of concepts never stabilize, 
and the model behaves chaotically. 

 
Generally, limit cycles and most of all chaotic behavior should be avoided, because 

in these cases the future states of the system cannot be predicted. In some specific ap-
plications however, e.g. if the goal is predict time series data [10], this behavior can be 
useful. 

3 Description of the method applied to analyze the uncertainty 
of connection weights 

The main idea of uncertainty investigation is to modify the connection weights and 
then to analyze the effect of modifications by simulations. The modifications are di-
rected by the Bacterial Evolutionary Algorithm (BEA) [11-13], in order to find the most 



‘interesting’ model variants: models with more fixed point attractors and/or chaotic be-
havior. These outcomes are found here by starting simulations with the same set of 
1000 different, randomly generated initial state vectors, the so-called scenarios. 

BEA is an evolutionary algorithm which is able to find the quasi-optimum of even a 
non-continuous, non-linear, multimodal function. It starts with a population of possible 
solutions and improves these solution candidates (also called ‘bacteria’) in every con-
secutive generation. The two main operators, bacterial mutation and gene transfer help 
to achieve this goal. The first one explores the search space by the random modifica-
tions of genetic data, the second one combines the already existing genetic information 
of the population. 

In this specific case, the bacteria of the BEA represent modified connection matrices. 
In our experiment the population consisted of 50 bacteria, and 5 consecutive genera-
tions were created. The weights in an FCM model are represented by real numbers, thus 
their number is theoretically infinite. Obviously, the number of weights had to be lim-
ited to a certain number, in our case 9 (-1, -0.75, -0.5, …, 1). The investigated model 
used only five discrete levels according to the linguistic variables chosen by experts. 
The 9 levels made possible smoother changes in connection weights, and according to 
our experience, the use of more levels does not provide significant advantages. The 
concept values in scenarios were also limited to five discrete levels.  

In order to limit the computational demand of the algorithm, and because human 
experts can identify concepts without any connections with high confidence, the ele-
ments of the connection matrix containing zeroes were left untouched. 

Despite of these restrictions it is easy to see that an exhaustive search would have 
been impossible in practice: the model under investigation contains 13 concepts, all 
concepts can have one of the possible 9 levels, thus the number of possible connection 
matrices can be up to 7.275e+148 (depending on the number of zero weight connec-
tions), the number of scenarios with five discrete levels is 1.22e+9. That is why BEA 
was applied to find the interesting modified models. The λ parameter of the threshold 
function was set to five in all simulations, because it would have further increased the 
execution time of the program, and simulations themselves can be time consuming 
tasks. Limit cycles and chaotic behavior cannot be distinguished by the program yet, 
but the fixed point attractors were recognized automatically. 

4 Results 

The model describes the components (concepts) of a bank playing the key roles in 
this research and their relations including their strength and direction. The concept id’s, 
their corresponding names are collected in Table 1. The concepts can be categorized 
into six different groups. Table 2 contains the connection matrix of the model. 



Table 1 Concept IDs, names and categories of the investigated model 

Concept ID Concept name Category 

C1 Clients 
Assets C2 Rules & regulations 

C3 New IT solutions 

C4 Funding 
Money 

C5 Cost reduction 

C6 Profit/loss 
Financials 

C7 Investments 

C8 Staff Human resources 

C9 New services 
Product and Process Development 

C10 Quality 

C11 Client development 
Output measures C12 Service development 

C13 Productivity 

Table 2 Connection matrix of the FCM model 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

C1 0 0 0.5 0 0 0.5 1 0.5 0 0.5 1 0.5 0 
C2 1 0 0.5 1 0 0 1 1 0.5 0 1 1 0 
C3 1 0.5 0 0 0 -1 0 -1 1 0 1 1 1 
C4 0 0 0 0 0 0 0 0 0 0 0 0 0 
C5 0 0 1 -0.5 0 0 0 -1 0 0 0 1 0 
C6 0 0 0 0 -0.5 0 0 0 0 0 0 0 0 
C7 0.5 0 0.5 1 0 0.5 0 0 0 -0.5 0 0 0 
C8 0 0 0 0 0 -0.5 0 0 0 0.5 0 0 -0.5 
C9 0 0 0 1 0 0.5 0.5 0.5 0 -0.5 0 0.5 0 
C10 0.5 0 0 0 0 0 0.5 0.5 0.5 0 1 0 0 
C11 0 0 0.5 0.5 0 0 0 0 0.5 0.5 0 0 1 
C12 0 0 0.5 0.5 0 0 1 0 0.5 0 0.5 0 -0.5 
C13 0 0 1 0 0 0.5 0 0 0 0 1 0 0 

 
First, the original model was investigated by simulations. The sigmoid type thresh-

old function was applied with λ=5 steepness parameter. Using a thousand element, ran-
dom-generated set of initial state vectors (scenarios), two possible outcomes were de-
tected by the K-Means clustering method. Both of them were fixed-point attractors 
(Fps), and most of the concepts had the same final values (1.0), except C6 (Profit/loss) 
and C8 (Staff). We remark here, that C4 was an input concept and as such it did not 
change its value during simulations, but the specific value itself depended on the con-
tent of the initial state vector only and was consequently left out from clustering. The 
final values of concepts are collected in Table 3. The first FP appeared in 23.1% of all 
investigated cases, and the second in the remaining 76.9%. 



Table 3 Fixed-point attractors of the model 

Concepts C1-C3, C5, C7, C9-C13 C6 C8 

FP#1 1.000 0.150 0.990 
FP#2 1.000 0.855 0.922 

Next, the model was further analyzed to reveal the effect of modified connection 
weights on its behavior. The search directed by BEA found 50 interesting model vari-
ants, but considering the size limitations of the paper, only two of them are presented 
here. The connection matrix of the first variant is shown in Table 4. The values in pa-
renthesis show the original connection weights to make comparisons easier. This mod-
ified model resulted in 12 different fixed-point attractors, but never behaved chaotically 
or produced limit cycles. The final state vectors are collected in Table 5. 

Table 4 Connection matrix of the first model variant 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

C1 0 0 -0.75 
(0.5) 0 0 1 (0.5) -1 (1) -0.25 

(0.5) 0 -0.5 (0.5) 0.5 (1) 0.75 
(0.5) 0 

C2 1 0 0.75 
(0.5) -0.5 (1) 0 0 0.5 (1) -0.25 (1) 0 (0.5) 0 0.25 (1) 1 0 

C3 0 (1) 0.75 
(0.5) 0 0 0 -0.25 

(-1) 0 -1 -0.75 
(1) 0 0.75 (1) -0.75 

(1) 1 

C4 0 0 0 0 0 0 0 0 0 0 0 0 0 
C5 0 0 -0.5 (1) 0 (-0.5) 0 0 0 1 (-1) 0 0 0 1 0 

C6 0 0 0 0 
-

0.75 
(-.5) 

0 0 0 0 0 0 0 0 

C7 1 (0.5) 0 1 (0.5) -0.25 (1) 0 -1 (0.5) 0 0 0 -0.75 (-
0.5) 0 0 0 

C8 0 0 0 0 0 -1 (-0.5) 0 0 0 -0.25 
(0.5) 0 0 -0.5 

C9 0 0 0 1 0 -0.25 
(0.5) 1 (0.5) 0.75 

(0.5) 0 0.75 
(-0.5) 0 -0.5 

(0.5) 0 

C10 -0.25 
(0.5) 0 0 0 0 0 -1 

(0.5) 
-0.25 
(0.5) -1 (0.5) 0 -0.75 

(1) 0 0 

C11 0 0 0 (0.5) -0.75 
(0.5) 0 0 0 0 1 (0.5) -1 (0.5) 0 0 -1 

(1) 

C12 0 0 -0.75 
(0.5) 0.5 0 0 -0.5 

(1) 0 0.25 
(0.5) 0 0.25 

(0.5) 0 0.75 
(-.5) 

C13 0 0 1 0 0 -0.75 
(0.5) 0 0 0 0 -0.5 (1) 0 0 

Table 5 Fixed-point attractors of the first model variant 
FP ID C1 C2 C3 C5 C6 C7 C8 C9 C10 C11 C12 C13 
FP#1 0.826 1.000 1.000 1.000 0.026 1.000 0.112 1.000 0.000 0.982 0.995 0.999 
FP#2 0.037 1.000 0.997 1.000 0.026 1.000 0.787 1.000 0.000 0.960 0.996 0.999 
FP#3 0.108 1.000 1.000 1.000 0.026 1.000 0.112 1.000 0.000 0.943 0.997 0.999 
FP#4 0.006 1.000 0.848 1.000 0.026 1.000 0.785 1.000 0.000 0.053 0.998 1.000 
FP#5 0.008 1.000 0.997 1.000 0.026 1.000 0.112 1.000 0.000 0.046 0.998 1.000 
FP#6 0.994 1.000 0.015 1.000 0.026 1.000 0.989 1.000 0.000 0.999 0.998 0.138 
FP#7 0.188 1.000 0.109 1.000 0.026 0.994 0.796 1.000 0.000 0.036 1.000 0.995 
FP#8 0.993 1.000 0.046 1.000 0.026 1.000 0.981 1.000 0.000 0.998 0.999 0.338 
FP#9 0.026 1.000 0.488 1.000 0.026 0.998 0.788 1.000 0.000 0.065 1.000 0.999 
FP#10 0.621 1.000 1.000 1.000 0.026 1.000 0.112 1.000 0.000 0.965 0.997 0.999 
FP#11 0.392 1.000 0.098 1.000 0.026 0.998 0.799 1.000 0.000 0.027 1.000 0.995 
FP#12 0.870 1.000 0.120 1.000 0.026 1.000 0.795 1.000 0.000 0.047 1.000 0.995 

Some interesting phenomena can be observed in Table 5. The value of C8 was very 
high in the original model (≈0.9), but it can be close to zero in the modified model. The 
values of C3, C11 and C13 were one, but in the modified model various values can be 
observed. The FP values of C2, C5, C7, C9 and C12 were 1 in the original model, it 



practically did not changed despite the modifications. C6 had two different values in 
the original model, but only a single one after the modifications. C10 changed its value 
from 1 to 0. 

The second selected model variant example behaved in a different way: it had only 
9 FPs, but 882 simulations out of 1000 did not result in stable state (chaotic behavior 
or limit cycles). 

Table 6 Connection matrix of the second model variant 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

C1 0 0 0.75 
(0.5) 0 0 -0.75 

(0.5) -0.25 (1) 0.25 
(0.5) 0 -1 (0.5) 0.25 (1) 1 (0.5) 0 

C2 -1 (1) 0 -0.75 
(0.5) -1 (1) 0 0 0.25 (1) -1 (1) 0.75 

(0.5) 0 0.25 (1) -1 (1) 0 

C3 -1 (1) 0.5 0 0 0 -0.25 
(-1) 0 -1 -0.5 (1) 0 -0.75 (1) -1 (1) 0.5 

(1) 

C4 0 0 0 0 0 0 0 0 0 0 0 0 0 

C5 0 0 -0.25 (1) 0.5 
(-0.5) 0 0 0 -0.75 

(-1) 0 0 0 -0.5 (1) 0 

C6 0 0 0 0 
-

0.75 
(-.5) 

0 0 0 0 0 0 0 0 

C7 -0.25 
(0.5) 0 -0.5 (0.5) 0.75 (1) 0 0.5 0 0 0 -1 (-0.5) 0 0 0 

C8 0 0 0 0 0 0.75 
(-0.5) 0 0 0 -0.25 

(0.5) 0 0 -1 
(-0.5) 

C9 0 0 0 -0.75 (1) 0 -0.5 (0.5) 0.25 
(0.5) 0 (0.5) 0 0 (-0.5) 0 -0.5 

(0.5) 0 

C10 0.5 0 0 0 0 0 1 (0.5) 0.75 
(0.5) 0.5 0 -0.25 (1) 0 0 

C11 0 0 0.25 
(0.5) 

-0.25 
(0.5) 0 0 0 0 1 (0.5) -0.25 

(0.5) 0 0 0 (1) 

C12 0 0 1 (0.5) -0.75 
(0.5) 0 0 0.5 (1) 0 0 (0.5) 0 -0.75 

(0.5) 0 0 
(-0.5) 

C13 0 0 0.5 (1) 0 0 0.75 
(0.5) 0 0 0 0 0.75 (1) 0 0 

Table 7 Fixed-point attractors of the second model variant 

FP ID C1 C2 C3 C5 C6 C7 C8 C9 C10 C11 C12 C13 

FP#1 0.053 0.000 0.000 0.010 0.993 0.957 0.846 0.012 1.000 0.964 0.883 1.000 
FP#2 0.001 0.020 0.001 0.201 0.985 0.979 0.834 0.065 1.000 0.968 0.103 1.000 
FP#3 0.970 0.000 0.000 0.994 0.027 0.883 0.002 0.007 1.000 0.158 0.923 0.997 
FP#4 0.002 0.280 0.001 0.046 0.992 0.137 0.844 0.182 1.000 0.990 0.041 1.000 
FP#5 0.002 0.887 0.006 0.045 0.992 0.134 0.844 0.180 1.000 0.990 0.041 1.000 
FP#6 0.002 0.995 0.001 0.046 0.992 0.137 0.844 0.880 1.000 1.000 0.039 1.000 
FP#7 0.013 0.001 0.000 0.024 0.992 0.979 0.845 0.013 1.000 0.957 0.656 1.000 
FP#8 0.033 0.044 0.000 0.073 0.991 0.829 0.135 0.023 1.000 0.977 0.961 1.000 
FP#9 0.020 0.000 0.000 0.061 0.991 0.998 0.843 0.001 1.000 0.146 0.950 1.000 

The FP values of C1, C2, C5, C7, C9, C11 and C12 were exclusively 1, but in the 
modified model their values could be significantly different. The value of C3 was al-
ways 1 in the original model, and it practically did not change after the model modifi-



cations. C6 had two different values (a low and a high one) in case of both model ver-
sions, but these pairs of values are not the same. C8 had two high FP values in the 
original model, but hold two smaller values in the modified model. The FP values of 
C10 and C13 are still 1. 

5 Conclusions and future research 

The applied method generated small modifications on FCM models that led to very 
different model behaviors. It proved to be very useful to find relationships that are sen-
sitive to changes and may cause unexpected simulation results. These connection 
weights need further investigations by experts of the specific field. 

The method should be further improved, however. The extent of weight modifica-
tions should be limited to a certain degree, depending on the application area. The effect 
of modified lambda value should be also analyze, because it may also heavily affect the 
simulation results. The differentiation of chaotic cases and limit cycles would be also 
important, and the improvement of some implementation details should be improved. 
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Abstract. In this paper, we introduce an implementation of an infer-
ence rule called “Independence Rule” which lets us to reduce the size of
knowledge basis based on the retraction problem. This implementation is
made in a functional language, Scala, and specialized on attribute impli-
cations. We evaluate its efficiency related to the Stem Base generation.

1 Introduction

At the present days, big amount of data are being generated which are needed
for automated tasks. These tasks can range from a single process to most com-
plicated reasoning, from a computational point of view.

One way of approaching this problem could be reducing information before
being included into reasoning tasks. These could be performed removing valid
information as long as consistency were preserved. Other approach, and our
proposal, could be building global reasoning engine and adapt it to every different
situation

From a more human point of view, a person has only one mind bit it is able
to handle different scopes of information and making decisions according the
situation it is. For example, a person acts differently if he is at home or in the
office, and make different answers to the same questions, and all of them are
valid in appropriate context.

To represent the information, we use (propositional) attribute implications
obtained by means of Formal Concept Analysis (FCA) ([4]). From a table of
information and FCA algorithms, a set of attribute implications can be obtained,
which is called “Stem Basis”. This basis represents the information contained in
the original table and can be used for reasoning by means of Armstrong rules,
for example.

Based on the retractor operator, also called “Independence Rule”([2]), our
aim is to build a contextual reasoner which could be computationally applied to
these new situations, efficiently and preserving the logic consistency. Therefore,
we develop a program in Scala, a functional language, implementing this operator
and taking advantage of all possible properties in order to speed up the creation



of the contextual reasoner faster than generating an equivalent reasoner from
scratch.

2 Theoretical foundations

2.1 Formal Concept Analysis (FCA)

It is not mandatory a full understanding of FCA ([4]), so we are going to do
a brief introduction and to emphasize in attribute implications which are the
connection to conservative retraction.

FCA is a mathematical tool for knowledge acquisition. It starts from the
definition of data as a formal context, M = (O,A, I), which consists of two sets,
O (the objects) and A (the attributes) and a binary boolean relation I ⊆ O×A.
The main goal in FCA is the computation of the concept lattice and the attribute
implications associated to the context.

Attribute implications are a pair of sets of attributes, written as Y1 → Y2,
where from a propositional logic point of view, Y1 → Y2 is the formula

∧
Y1 →∧

Y2, and it is equivalent to a set of Horn clauses.
For every context, we can obtain a Stem basis([4]), also called Duquenne-

Guigues([6]) base. This base is a set of implications which are complete and
non-redundat set.

Actually one can choose Y → Y ′′ \ Y instead of Y → Y ′′, so we will assume,
by default, that every implication Y1 → Y2 which belongs to a stem basis, Y1
and Y2 are disjoint.

To illustrate this, we show an example of a formal context about living beings
(see figure 1). In this example, we can see the objects (Cat, Leech, Frog, . . . ),
attributes (Need water, Aquatic, . . . ) and a “×” when the relation holds between
object and attribute. Applying the Duquenne-Guigues algorithm to calculate the
stem basis, we obtain a set of 3 attribute implications.

Fig. 1. Formal context and its attribute implications

2.2 Conservative retractions

Conservative extensions is a popular problem that has been widely studied in
Mathematical Logic. Based on this, we can reformulate the problem of conser-
vative retractions analogously:

A theory T is a conservative extension of a theory T ′ (or T ′ is a conservative
retraction) if every consequence of T in the language of T ′ is a consequence of T ′

already. This definition let us to use smaller knowledge basis than original ones
to perform contextual reasoning and preserving the logic consistency of results.



The main goal of this paper is to develop an efficient implementation of a
retracting operator for computing a conservative retraction in a propositional
logic theory. We will denote by [T, L′] a conservative retraction of T to the
sublanguage L′ throughout the paper.

We introduce an operator on propositional formulas as a translation of the
usual derivation on F2[x]([2]).

Definition 1. A ∂ : PForm→ PForm is a Boolean derivation if there exists
a derivation d on the ring F2[x] such that ∂ = Θ ◦ d ◦ π

If the derivation on F2[x] is d = ∂
∂xp

, we denote ∂ as ∂
∂p . It has that:

∂

∂p
F ≡ ¬(F{p/¬p} ↔ F )

Thus, the value of ∂
∂pF with respect to a valuation does not depend on p.

and the definition for the “independence rule” (or retraction operator) is:

Definition 2. The independence rule (or ∂-rule) on polynomial formulas is

∂x(a1, a2) :
a1, a2

1 + Φ
[
(1 + a1 · a2)(1 + a1 · ∂∂xa2 + a2 · ∂∂xa1 + ∂

∂xa1 · ∂∂xa2)
]

For formulas the rule is translated as

∂p(F1, F2) := Θ(∂xp(π(F1), π(F2))).

2.3 Conservative retraction on attribute implications

The Stem basis of a formal context is a set of attribute implications which is
equivalent to it. Applying the conservative retraction operator to a stem basis,
we can obtain a new set of attribute implications with a smaller language and
logic consistency preserved.

In this way, we can obtain the stem basis for the full context, which is com-
putationally hard, and adapt this basis to every contextual reasoning avoiding
to recalculate a new basis from scratch. This can be justified as long as the
calculation of the retraction is faster than the complete.

We obtain a definition for ∂p for attribute implications by means of an ex-
tension of classic propositional resolution resp(·, ·).
Lemma 1. Let Ci ≡

∧
Y i1 →

∧
Y i2 be an implication (i = 1, 2, Y i1 ∩ Y i2 = ∅),

and Γ be a set of implications. Let ∂cp(C1, C2) be the symmetric operator

∂cp(C1, C2) :=





{C1, C2} p /∈ var(C1) ∪ var(C2)
{C2} p ∈ Y 1

1 , p /∈ var(C2)
{∧Y 1

1 →
∧

(Y 1
2 \ {p}), C2} p ∈ Y 1

2 , p /∈ var(C2)
{>} p ∈ (Y 1

1 ∩ Y 2
1 ) ∪ (Y 1

2 ∩ Y 2
2 )

{Resolventp(C1, C2)} p ∈ Y 1
1 ∩ Y 2

2 or p ∈ Y 2
1 ∩ Y 1

2

If ∂cp[Γ ] :=
⋃{∂cp(C1, C2) : C1, C2 ∈ Γ}, then ∂cQ[Γ ] ≡ ∂Q[Γ ] (Q ⊆ PV ).

As we can see in definition, when we apply this operator to all the formulae
into the set, the variable used in retraction disappear of them. The language of
the new set of formulae is a subset of original.



3 Implementation

This implementation3 of the retraction operator have been written in Scala, a
functional and object-oriented language which let us to write source code near
to mathematical definitions. Scala must be runned in a Java Virtual Machine,
in order to be portable and integrable in most of platforms. For this, Scala
empowers us to zip the code into a “.jar” file and redistribute it.

The software was developed from scratch. Firstly, we develop a small logical
framework not restricted only in attribute implications. We develop a set of
logic functions in order to check properties of our operator and validate the
final implementation. For this reason, this framework could be extended to more
logical functionality easily.

The original retraction operator is defined for 2 formulae (see Lemma 1) and
is extended for a set of formulae in a natural way, taking the first advantadge in
its symmetry.

As we said before, the numbers of variables are decreasing after every appli-
cations but, on the other hand, the number of formulae increase. Note that in
same cases of the operator it produces two formulae each step ([5]).

Optimizations This increase in formulae penalize the perfomance of the sys-
tem. Therefore, we focus all our efforts in this number.

After applying the operator, we analyze the results and mainly consider this
optimizations:

– Implications with empty consequent. Y1 → >
This implication is a tautology and, therefore, it is always true. We can
remove it from results.

– Implications with empty antecedent. > → Y 2
This formula implies that all attributes involved in Y2 are True, triggering
that we must replace the atributes with True. Because of out implementation,
this replacing is equivalent to remove all appearances of the attributes into
all formulae.

– Repeated formulae
This was the hardest optimization because it induced us to develop extra
data structures and increase our memory consumption in order to preserve
the execution time.

These optimizations, and some minors, do not reduce the complexity of this
problem, but are aimed to reduce the time of computation. Memory is not a big
deal but time it is.

4 Experiments and results

In order to analyze the proper operation of the algorithm as well as the opti-
mizations, both versions have been executed on different sets of rules. This set of

3 http://protosmart.uhu.es/retraction/ImplicationRetractor.jar



rules were generated from FCA random contexts and calculating its stem basis.
Random contexts also were experimented in different sizes.

First experiment was designed to investigate how is the performance of the
algorithm retracting all variables in the language. We created several squared
FCA random contexts with 7 attributes and a density of relation of 0.4. After
generating all set of rules, we counted the time it took for every retraction and
results are shown in figure 2.

Fig. 2. Time consumed per iteration

We note that for firsts iterations, when the number of formulae did not grow
too, original algorithm has a little better performance than the optimized. The
cost of optimizations are not advised for systems with an small set of formulae.
After that, we can see that optimizations are a key point in the performance of
the system.

Second experiment was devoted to check if it would be suitable for contextual
reasoning. For this, we realized and experiment, in one hand, generating stem
basis for FCA random context with n attributes and, on the other hand, starting
from context with n+ 1 attributes and retracting in 1 attribute.

Fig. 3. Generation and retraction times



As we see in figure 3, from a certain number of attributes the retractor
operator is much faster than the generation from scratch. The improvement
of optimizations are up to a 65% with this number of attributes. Also we can
see that the exponential increment of time is bigger in generation more than
retraction.

5 Conclusions and future works

In this paper, we introduce an efficient implementation of a retraction operator.
The aim of this work is build mechanisms to automatize the contextual reason-
ing adapting the big knowledge basis into affordable problems. We also present
several experiments which show that this way looks like a good starting point
to keep working on that.

Our next step will be to extend this method for clauses and try to offer an ef-
ficient solution for SAT problem, introducing negation. Other future work could
be implement this system in a “Map-Reduce” architecture. Based on the “inde-
pendence” of operator’s application to pairs of equations, it would be suitable
for a big parallelization of the problem.
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Abstract. Negative information can be considered twofold: by means
of a negation operator or by capturing the absence of information. In
this second approach, a new framework have to be developed: from the
syntax to the semantics, including the management of such generalized
knowledge representation. In this work we traverse all these issues in the
framework of formal concept analysis, introducing a new set of inference
rules to manage mixed (positive and negative) attributes.

1 Introduction

We focus on Formal Concept Analysis which represents the information as a
binary relation (named formal context) between objects as rows and attributes
as columns. From this table, mining techniques to extract knowledge are well
know and it is possible to compute a concept lattice and also a sets of implications
representing the same knowledge. We are particularly interested in implications
because they allow a symbolic manipulation by using logic.

Normally, the formal context stores that “an object has an attribute”. In this
work, we consider interesting not only this observation, represented with positive
attributes, but also that “an object has not an attribute” (negative attribute),
that is, not only the presence but also the absence of a given property.

This idea already appeared in data mining area, where some works [5] con-
sidered the negation of attributes inside of implications: the use of positive and
negative attributes appeared in basket market analysis, when rules considering
that “if a customer usually buys a given product then he does not buy other
specific product”. In these former works, the negative information negatively
impacts on the data mining method because some cut mechanisms used became
not valid. In our opinion, this situation can be resolved if a suitable treatment
with positive and negative attributes are added.

In FCA, as far as we know, only some works consider the management of
both positive and negative attributes in FCA. In [4], the authors join the for-
mal context with its complementary and use the classical FCA methods of data
mining to retrieve implications with positive and negative attributes. Unfortu-
nately, such an approach cannot take advantage of the semantics of the enriched
framework. In 2012, Missaoui et.al. [6] have approached the generation of mixed
implications from two given sets of implications only with positive and nega-
tive attributes respectively. We have followed this line: in [12], we extended the



classical FCA framework with new derivation operators constituting a Galois
connection for the treatment of negative and positive information in FCA and
in [10, 11] we proposed some mining algorithms to derive directly mixed impli-
cations.

In this work, we progress in this line by proposing a set of inference rules
to manage efficiently mixed implications. This logic is based on Simplification
paradigm presented in [7].

The structure of the paper is the following: Section 2 shows some preliminar-
ies. The new set of rules to manipulate implications with positive and negative
attributes is presented in Section 3. Finally, some conclusions appear in Sec-
tion 4.

2 Preliminaries

The data in Formal Concept Analysis are stored in a binary table named a formal
context which formally is defined as the triple K = 〈G,M, I〉 where G and M
are finite non-empty sets and I ⊆ G ×M is a binary relation. The elements in
G are named objects, the elements in M attributes and 〈g,m〉 ∈ I means that
the object g has the attribute m.

In this triple, two mappings ↑ : 2G → 2M and ↓ : 2M → 2G, named derivation
operators, are defined as follows: for any X ⊆ G and Y ⊆M ,

X
↑

= {m ∈M | 〈g,m〉 ∈ I for all g ∈ X} (1)

Y
↓

= {g ∈ G | 〈g,m〉 ∈ I for all m ∈ Y } (2)

X↑ is the subset of all attributes shared by all the objects in X and Y ↓ is the
subset of all objects that have the attributes in Y . The pair (↑, ↓) constitutes
a Galois connection between 2G and 2M and, therefore, both compositions are
closure operators.

A pair of subsets 〈X,Y 〉 with X ⊆ G and Y ⊆ M such that X↑ = Y and
Y ↓ = X is named a formal concept where X is its extent and Y its intent. These
extents and intents coincide with closed sets wrt the closure operators because
X↑↓ = X and Y ↓↑ = Y . Thus, the set of all formal concepts is a lattice, named
concept lattice, with the relation

〈X1, Y1〉 ≤ 〈X2, Y2〉 if and only if X1 ⊆ X2 (or equivalently, Y2 ⊆ Y1) (3)

This concept lattice will be denoted by B(K). The concept lattice can be
characterized in terms of attribute implications being expressions A→ B where
A,B ⊆ M . An implication A → B holds in a context K if A↓ ⊆ B↓. That is,
any object that has all the attributes in A has also all the attributes in B. These
implications can be syntactically managed in a logical style [1]. The main aim
of this paper is to provide a sound and complete logic to manage implications
that also considers negative information.



3 Simplification paradigm and mixed attributes

Armstrong’s axioms [1] constitutes a pioneer complete axiomatic system which
opened the door to the manipulation of implications. It was designed to charac-
terize the semantics of implications but it was not conceived to design automated
method around it. In fact, its main pillar is the transitivity paradigm, which
avoids the design of efficient automated methods. In [3] the authors presents,
for first time, an alternative paradigm to tackle this issue, by introducing the
Simplification paradigm and building a new complete axiomatic system named
Simplification Logic for Functional Dependencies SL

FD
. It avoids the use of transi-

tivity and is guided by the idea of simplifying the set of implications by efficiently
removing some redundant attributes [3].

We define the SL
FD

logic as the pair (LS ,SS), corresponding to its language
and axiomatic system.

Definition 1. Let M be a set of attributes, the set of well formed formulas of
SL

FD
is defined as LS = {X→Y | X,Y ⊆M}.

Once the language has been defined, semantics provides an interpretation
for each well formed formula of the language. Semantics of implications can
be introduced in several frameworks. In this work we consider Formal Concept
Analysis to introduce SL

FD
semantics.

Definition 2. Let K = 〈G,M, I〉 be a formal context and A → B ∈ LS. The
context K is said to be a model for A→B if B ⊆ A↓↑. It is denoted by K |= A→B.

We remark that

K |= A→ B if and only if A↓ ⊆ B↓

As usual, the notion of models can be extended to implicational systems:
given Σ ⊆ LS , the expression K |= Σ means that K |= A→ B for all A→ B ∈
Σ.

Definition 3. Let M be a set of attributes, A → B ∈ LS and Σ ⊆ LS. The
implication A → B is said to be semantically derived from Σ, denoted by Σ |=
A→ B, if K |= Σ implies K |= A→ B for every formal context K.

On the other hand, two implicational systems Σ1, Σ2 ⊆ LS are semantically
equivalent, denoted by Σ1 ≡ Σ2, if the following equivalence holds

K |= Σ1 if and only if K |= Σ2

for every formal context K.

In summary, Σ |= A → B if every model for Σ is a model for A → B and
Σ1 ≡ Σ2 if their models are the same, it means, both sets represent the same
knowledge. Regarding the axiomatic system, SS considers reflexivity as axiom
scheme



[Ref]
A ⊇ B
A→B

together with the following inference rules called fragmentation, composition and
simplification respectively.

[Frag]
A→B ∪ C
A→B [Comp]

A→B, C→D
A ∪ C→B ∪D [Simp]

A→B, C→D
A ∪ (C rB)→D

The equivalence between SL
FD

logic and Armstrong’s Axioms and an efficient
algorithm to compute the closure of a set of attributes were proposed in [7].

In this section, we introduce a natural extension of Simplification logic to
consider positive and negative information. As we have done in the classical
case, we introduce the language and a sound and complete axiomatic system.

3.1 The language of SLMx

Lowercase character m will be used to denote positive attributes and m will
denote the negation of the attribute m. M denotes the set {m | m ∈M} whose
elements will be named negative attributes.

Definition 4. Given a finite set of attributes M , the language of SLMx is

LS = {X → Y | X,Y ⊆M ∪M}.

Formulas in LS are named mixed attribute implications.

Arbitrary elements in M ∪M are denoted by using the first letters in the
alphabet: a, b, c, etc. For each a ∈M ∪M , a denotes its opposite. Namely, the
symbol a could represent a positive or a negative attribute i.e. if a = m ∈ M
then a = m and if a = m ∈M then a = m.

Similarly as we did in the classical framework, the subsets of M ∪M will be
denoted by uppercase characters A, B, C, etc. and we introduce the following
notation: for each A ⊆M ∪M ,

– A is the set of the opposite of attributes in A, i.e. {a | a ∈ A}
– Pos(A) = {m ∈M | m ∈ A} and Neg(A) = {m ∈M | m ∈ A}
– Tot(A) = Pos(A) ∪Neg(A)

Note that Pos(A),Neg(A),Tot(A) ⊆M .

3.2 The semantics of SLMx

Now we introduce the semantics of SLMx. Classical derivation operators are
extended as follows:

Definition 5. Let K = 〈G,M, I〉 be a formal context. We define the operators
⇑ : 2G → 2M∪M and ⇓ : 2M∪M → 2G as follows: for X ⊆ G and Y ⊆M ∪M ,

X
⇑

= {m ∈M | 〈g,m〉 ∈ I for all g ∈ X} ∪ {m ∈M | 〈g,m〉 6∈ I for all g ∈ X}

Y
⇓

= {g ∈ G | 〈g,m〉 ∈ I for all m ∈ Y } ∩ {g ∈ G | 〈g,m〉 6∈ I for all m ∈ Y }



The above extended derivation operators have similar properties as the classical
ones. More specifically, they define a Galois connection:

Theorem 1. For any formal context K = 〈G,M, I〉, the pair (⇑,⇓ ) is a Galois

connection between (2G,⊆) and (2M∪M ,⊆).

As a consequence of the above theorem, similarly that occurs in the classical
case, both compositions ⇑◦⇓ and ⇓◦⇑ are closure operators and lead to notions
of mixed formal concept and mixed concept lattice [10].

Now, we can provide a meaning for formulas in the language (implications).

Definition 6. Let K = 〈G,M, I〉 be a formal context and A → B ∈ LS. The
context K is a model for A → B, denoted by K |= A → B, if A⇓ ⊆ B⇓, or

equivalently B ⊆ A⇓⇑
.

Example 1. Considering the formal context K = 〈G,M, I〉 where the set of ob-
jects is G = {o1, o2, o3, o4}, the set of attributes is M = {m1,m2,m3,m4,m5}
and I is the binary relation depicted in Table 1, we have that K 6|= m2 → m4

and K |= m2 → m4 whereas K 6|= m2 → m3 either K 6|= m2 → m3.

I m1 m2 m3 m4 m5

o1 × × ×
o2 × ×
o3 × × ×
o4 × ×

Table 1. A formal context

As usual, given a set of mixed attribute implications Σ ⊆ LS and a formal
context K, the expression K |= Σ denotes K |= A → B for all A → B ∈ Σ and
Σ |= A→ B denotes that any model for Σ is also model for A→ B.

3.3 An axiomatic system for SLMx

To end this section, we propose a set of inference rules to reason with mixed
implications strongly inspired by the simplification paradigm.

The axiomatic system for SLMx considers two axiom schemes and four in-
ference rules. They are the following:

[Ref] Reflexivity: `Mx A→ A.

[Simp] Simplification: A→ B,C → D `Mx A(C −B)→ D.

[Key] Key: A→ b `Mx Ab→MM.

[RevKey] Reverse Key: Ab→MM `Mx A→ b.

[Red] Reduction: Ab→ C,Ab→ C `Mx A→ C.



4 Conclusions and future works

We propose a new logic for the automated and efficient treatment of implications
considering positive and negative information. It opens the door for the future
developments of methods in FCA and in other areas.

Some interesting future research lines regarding a further generalization of
our proposal, could be adressed in The Three-Way Formal Concept Analysis [8,
9] exploits the idea of dividing the universe of discourse into three disjoint sub-
sets: positive, negative and boundary. The idea of using negative information
in the contexts is approached in these works by means of positive and negative
operators.
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Abstract. Attribute reduction is a fundamental part in different math-
ematical tools devoted to data analysis, such as, Rough Set Theory and
Formal Concept Analysis. These last mathematical theories are closely
related and, in this paper, we establish connections between attribute re-
duction in both frameworks. Mainly, we have introduced a sufficient and
necessary condition in order to ensure that the reducts in both theories
coincide.

1 Introduction

Rough Set Theory (RST) and Formal Concept Analysis (FCA) are two powerful
mathematical tools for processing incomplete information in large databases,
which contain an objects set, an attributes set and a relationship between them.

Reduce the set of attributes, keeping the obtained information of the orig-
inal database, is one of the most important goals in both frameworks. How-
ever, attribute reduction considers a different philosophy in both theories. In
FCA we reduce the number of attributes of the database without modifying the
structure of the original concept lattice, while in RST we select the attributes
without losing the ability to discern objects, this last procedure is usually called
attribute selection. Hence, the philosophies of both reductions are not equiva-
lent. Although the attribute reduction procedures in FCA and in RST are not
equivalent. Despite this lack of similarity, study mathematical results relating
both procedures is interesting, since the contributions in one framework enrich
the other one.

Attribute reduction has been studied separately in both theories [3, 4, 6, 8, 10,
11], although only a few papers study the existing connections [?,14], showing
that the reducts in both frameworks do not coincide, in general.

The main contribution of this paper is to introduce a sufficient and necessary
condition in order to ensure that the reducts in RST and in FCA, obtained from
the considered database, are the same.

? Partially supported by the State Research Agency (AEI) and the European Regional
Development Fund (FEDER) project TIN2016-76653-P.
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2 Preliminaries

Let us begin recalling the necessary notions and results of RST and FCA.First
of all, we need to recall the notion of information system.

Definition 1. An information system (U,A) is a tuple, such that the sets U =
{x1, x2, . . . , xn} and A = {a1, a2, . . . , am} are finite, non-empty sets of objects
and attributes, respectively, in which, each a ∈ A corresponds to a mapping
ā : U → Va, where Va is the value set of a over U . For every subset D of
A, the D-indiscernibility relation, Ind(D), is defined as the equivalence relation
Ind(D) = {(xi, xj) ∈ U × U | for all a ∈ D, ā(xi) = ā(xj)}.

If we have that the value set of a is Va = {0, 1}, for all a ∈ A, (U,A) is called
boolean information system.

The notions of consistent set and reduct of an information system are needed
to relate RST and FCA.

Definition 2. Let (U,A) be an information system and a subset of attributes
D ⊆ A. D is a consistent set of (U,A) if Ind(D) = Ind(A). Moreover, if for
each a ∈ D we have that Ind(D \ {a}) 6= Ind(A), then D is called reduct of
(U,A).

Definition 3. Given an information system (U,A), its discernibility matrix is
a matrix of order |U | × |U |, denoted as MA, in which the element MA(i, j) for
each pair of objects (i, j) is defined by MA(i, j) = {a ∈ A | ā(i) 6= ā(j)} and the
discernibility function of (U,A) is defined by:

τA =
∧{∨

(MA(i, j)) | i, j ∈ U and MA(i, j) 6= ∅
}

Reducts in RST are characterized from the notion of discernibility function,
as the following result shows.

Theorem 1. Given a boolean information system (U,A). An arbitrary set D,
where D ⊆ A, is a reduct of the information system if and only if the cube

∧
a∈D a

is a cube in the restricted disjunctive normal form1 (RDNF) of the discernibility
function τA.

Now, the basic definitions of FCA, will be recalled. In FCA, a context is
a triple (A,B,R) composed of the attributes set A, the objects set B and the
relationship R : A×B → {0, 1}, defined, for each a ∈ A and b ∈ B, as R(a, b) = 1,
if a and b are related and R(a, b) = 0, otherwise. From a context, the concept-
forming operators are the mappings ↑ : 2B → 2A, ↓ : 2A → 2B defined for each
X ⊆ B and Y ⊆ A, as:

X↑ = {a ∈ A | for all b ∈ X, aRb} = {a ∈ A | if b ∈ X, then aRb} (1)

Y ↓ = {b ∈ B | for all a ∈ Y, aRb} = {b ∈ B | if a ∈ Y, then aRb} (2)

1 We assume that the reader is familiar with the notions related to classical theory of
propositional logic [5, 7].
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A concept is a pair (X,Y ), where X ⊆ B, Y ⊆ A, satisfying that X↑ = Y
and Y ↓ = X. The extent is the subset of objects X of the concept (X,Y ) and
the subset of attributes Y is called intent. The set of all the concepts, denoted
as B(A,B,R), with the inclusion ordering on the left argument, is a complete
lattice [5, 8].

Due to the mappings ↑ and ↓ form a Galois connection, given an object
b ∈ B, we can define an object-concept as the concept generated by b, that is,
(b↑↓, b↑). Analogously, an attribute-concept, (a↓, a↓↑), is the concept generated
by an attribute a ∈ A.

On the other hand, the main goal of attribute reduction in FCA is to reduce
the set of attributes without changing the structure of the concept lattice.

Given a context (A,B,R) and a subset of attributes Y ⊆ A, the triple
(Y,B,R|Y ) is also a formal context, where R|Y = R ∩ (Y × B) denotes the

restricted relation. Then, we can define the restricted mappings ↓Y

and ↑Y ,
in a similar way to the ones given in Equations (1) and (2). It is clear that
X↑Y = X↑ ∩ Y , for any subset of objects X ⊆ B. Finally, we recall the notions
of consistent set and reduct in the FCA framework.

Definition 4. Let (A,B,R) be a context, if there exists a set of attributes Y ⊆
A such that B(A,B,R) ∼= B(Y,B,R|Y ), then Y is called a consistent set of
(A,B,R). Moreover, if B(Y r {y}, B,R|Yr{y}) 6∼= B(A,B,R), for all y ∈ Y ,
then Y is called reduct of (A,B,R).

3 Relating reducts in RST and FCA

In this section, we will consider a finite set of attributes and of objects. In
addition, to clarify the environment in which we are working, RST or FCA,
we will denote a reduct of an information system (U,A) as RS-reduct and a
reduct of the context (A,B,R) as CL-reduct. Similarly, a consistent set of the
information system (U,A) will be called as RS-consistent set and a consistent
set of the context (A,B,R) as CL-consistent set.

First of all, we will recall how to obtain an information system from a for-
mal context and a technical lemma, which are needed to relate the considered
operators.

Definition 5. Let (A,B,R) be a context, a context information system is de-
fined as the pair (B,A) where the mappings ā : B → Va, with Va = {0, 1}, are
defined as ā(b) = R(a, b), for all a ∈ A, b ∈ B.

Lemma 1 ([?]). Given a context (A,B,R) and the corresponding context in-
formation system (B,A), the equality a↓ = ā holds, for each a ∈ A.

In addition, in [14] it was proven that a CL-consistent set of a context always
provides an RS-consistent set of the associated context information system.

Theorem 2 ([14]). Given a context (A,B,R) and the corresponding context
information system (B,A). If D ⊆ A is a CL-consistent set then D is an RS-
consistent set.
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The counterpart of Theorem 2 is not true, in general, as we can see in the
following example. More properties can be seen in [?,14]. Therefore, both notions
are not equivalent, even more so when we consider RS-reducts and CL-reducts.

Example 1. We will consider a context (A,B,R) composed of two objects b1, b2 ∈
B, two attributes a1, a2 ∈ A, and the relationship R defined in Figure 1.

R a1 a2
b1 1 0

b2 0 1

Fig. 1. Relation R and the Hasse diagram of the context in Example 1.

In this case, we have that a↓1 = {b1} and a↓2 = {b2}. Moreover, we can see in

Figure 1 that C1 = (a↓1, a
↓↑
1 ) and C2 = (a↓2, a

↓↑
2 ) are meet-irreducible elements.

Hence, we cannot remove these concepts of the concept lattice and the attributes
a1 and a2 are necessary to preserve the structure of the concept lattice. Thus,
the CL-reduct of this context is the set {a1, a2}.

If we consider the context information system corresponding to the context
(A,B,R), we obtain that the following discernibility matrix:

(
∅ {a1, a2}

{a1, a2} ∅

)

It is easy to see that, in this case, the discernibility function is given by τA =
{a1} ∨ {a2}. Therefore, if we want to discern the objects b1 and b2 we need
to consider one attribute of the context information system. In this way, two
different RS-reducts D1 = {a1} and D2 = {a2} (Ind(D1) = Ind(D2) = Ind(A))
are obtained, whilst in FCA we have to take into account both attributes. ut

Now, we are interested in establishing the constraints to ensure that the
family of CL-reducts of a context coincides with the family of RS-reducts of the
associated context information system. For that purpose, we need to consider
an special kind of formal context. Specifically, we say that a context (A,B,R)
does not have cross-values if for every a1, a2 ∈ A, i, j ∈ B satisfying R(a1, i) 6=
R(a1, j) and R(a2, i) 6= R(a2, j), then the equalities R(a1, i) = R(a2, i) and
R(a1, j) = R(a2, j) holds. Every context with no cross-values satisfies the fol-
lowing property:

Proposition 1. If the context (A,B,R) does not have cross-values, then all
attribute-concepts in the associated concept lattice are comparable.

The following result fixes the condition to guarantee that a CL-reduct of a
context is a RS-reduct of the associated context information system.
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Theorem 3. Let (A,B,R) be a context and (B,A) be the corresponding context
information system. The family of CL-reducts coincides with the family of RS-
reducts if and only if the context (A,B,R) does not have cross-values.

The following example illustrates the previous result.

Example 2. Let (A,B,R) be a context with three objects b1, b2, b3 ∈ B, four
attributes a1, a2, a3, a4 ∈ A, and the relationship R displayed in Figure 2.

R a1 a2 a3 a4
b1 1 1 1 1

b2 0 0 1 0

b3 1 0 1 0

 

 

Fig. 2. Relation R and the Hasse diagram of the context in Example 2.

The associated concept lattice can be seen on the right side of Figure 2, where
we can observe that the set of meet-irreducible elements is the following:

C0 = (a↓2, a
↓↑
2 ) = (a↓4, a

↓↑
4 ) = ({b1}, {a1, a2, a3, a4})

C1 = (a↓1, a
↓↑
1 ) = ({b1, b3}, {a1, a3})

Therefore, we cannot remove these concepts of the context and, in order to
preserve the original structure of the concept lattice, we need to consider the
subset of attributes D1 = {a1, a2} or D2 = {a1, a4}. Thus, the sets D1 and D2

are the CL-reducts of this context.
Considering the context information system associated with the context (A,B,R),

we obtain that the discernibility matrix is:




∅ {a1, a3, a4} {a2, a4}
{a1, a3, a4} ∅ {a1}
{a2, a4} {a1} ∅




From this discernibility matrix, the obtained discernibility function is τA =
{a1, a2} ∨ {a1, a4}. Hence, according to Theorem 1 the RS-reducts are D′

1 =
{a1, a2} and D′

2 = {a1, a4}, which coincide with the CL-reducts. Therefore, in
this case, both families coincide. ut

4 Conclusions and future work

In this paper, we have progressed in the study of the relationship between at-
tribute reduction in FCA and RST. Mainly, we have presented an interesting
result which set a sufficient and necessary conditions to ensure that the family
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of RS-reducts and the family of CL-reducts are the same. We have also intro-
duced detailed examples in order to illustrate the contributions.

Bireducts were presented as a natural extension of reducts in RST. Bireduts
reduce attributes and objects at the same time, providing more flexibility [1, 2,
9, 12, 13]. In the future, we will extend this notion to the FCA framework.
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2. M. Beńıtez, J. Medina, and D. Ślȩzak. Reducing information systems considering
similarity relations. In J. Kacprzyk, L. Koczy, and J. Medina, editors, 7th European
Symposium on Computational Intelligence and Mathematices (ESCIM 2015), pages
257–263, 2015.

3. M. E. Cornejo, J. Medina, and E. Ramı́rez-Poussa. Irreducible elements in multi-
adjoint concept lattices. In Intl Conference on Fuzzy Logic and Technology,
EUSFLAT 2013, pages 125–131, 2013.

4. M. E. Cornejo, J. Medina, and E. Ramı́rez-Poussa. Attribute reduction in multi-
adjoint concept lattices. Information Sciences, 294:41 – 56, 2015.

5. B. Davey and H. Priestley. Introduction to Lattices and Order. Cambridge Uni-
versity Press, second edition, 2002.

6. S. Dias and N. Vieira. Reducing the size of concept lattices: The jbos approach.
In 7th International Conference on Concept Lattices and Their Applications (CLA
2010), volume 672, pages 80–91, 2010.

7. D. M. Gabbay and F. Guenthner, editors. Handbook of Philosophical Logic. Vol-
ume I: Elements of Classical Logic, volume I of Handbook of Philosophical Logic.
Springer Netherlands, 1983.

8. B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundation.
Springer Verlag, 1999.
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12. D. Ślȩzak and A. Janusz. Ensembles of bireducts: Towards robust classification
and simple representation. In T.-h. Kim, H. Adeli, D. Ślȩzak, F. Sandnes, X. Song,
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Abstract. The aim of this paper is to propose a new similarity measure between
linguistic terms by using restricted equivalence functions. We formally define it
and prove that it fulfills similarity conditions. We explain how this measure can
be employed for improving approximate reasoning in expert system inference en-
gines and for maximizing similarity measures between linguistic terms. Finally,
an experimental comparison between similarity measures is performed.

1 Introduction

Similarity between elements from a set is an important concept in several disciplines.
In machine learning similarity is employed in order to find out regions within the data
space with similar features, in computer vision similarity plays an important role in
classification, clustering, image segmentation, object tracking and recognition.

Due to the great variety of disciplines there is not exists a universal similarity mea-
sure, it depends on the underlying data structure. For example, in social data analyt-
ics, similarity is defined on a collection of graphs, in bio-informatics is established on
strings, in natural language processing between words and grammars, in fuzzy logic is
established on different kind of fuzzy sets, in logic programming, similarity is defined
between terms of a first-order language.

In this paper a new similarity measure between linguistic terms based on restricted
equivalence functions is proposed. This measure is formally defined and it is proved
that it fulfills similarity conditions. An experimental exploration is performed by im-
plementing it in a real system called Bousi Prolog 1. We show that it is a well-suited
measure for maximizing similarity and for improving approximate reasoning in expert
system inference engine.

The outline of the paper is as follows. In section 2 general concepts regarding lin-
guistic terms and restricted equivalence functions are introduced. In section 3 a similar-
ity measure between linguistic terms using Restricted Equivalent Functions is proposed
and formally defined. An experimental evaluation is performed in section 4 and, finally,
we give our conclusions and future research lines in section 5.

1 Web Site of Bousi Prolog: http://www.face.ubiobio.cl/ clrubio/bousiTools/



2 Preliminaries Concepts

2.1 Linguistic Variable and proximity equations

A linguistic variable is a quintuple (X,T (X), U,G,M) where:X is the variable name,
T (X) is the set of linguistic terms ofX (i.e., the set of names of linguistic values ofX),
U is the domain or universe of discourse, G is a grammar that allows to generate T (X)
and M is a semantic rule which assigns to each linguistic term x in T (X) its meaning
(i.e., a fuzzy subset of U —characterized by its membership function µx—).

A linguistic variable can be represented by using a set proximity equations (PEs).
A PE has the form Ei ≡ x ∼ y = α1, with x, y ∈ T (X) and α ∈ [0, 1]. Therefore, PEs
are defined on the set of linguistic terms, T (X). To this end, we proceed as follows:

Suppose that T (X) = {xi | i ∈ I}, where I is a set of
indexes. For each xi and xj , with i, j ∈ I , we generate a
proximity equation on T (X):R(xi, xj) = α. The degree α
is calculated by using a similarity measure between M(xi)
and M(xj)

Fuzzy matching functions play an important role in the most of the expert system infer-
ence engines. For example, Fuzzy Clips [6] and Bousi Prolog [8] employ fuzzy match-
ing functions in order to implement similarity measures between linguistic terms [5].

Example 1. Suppose a linguistic variable Age with T (Age) = {young,middle −
aged, old}, U = [0, 100] and the trapezoidal membership functions for young, middle-
aged and old, respectively: (0, 0, 30, 50), (20, 40, 60, 80),(50, 80, 100, 100). Then, a
similarity measure can be established between linguistic terms which can be repre-
sented by using proximity equations. For example, the following proximity equations
are computed by using the fuzzy matching function implemented by the Fuzzy Clips
system.

young ˜ middle=similarity(young,middle)=0.4
young ˜ old=similarity(young,old)=0.0
middle ˜ old=similarity(middle,old)=0.3

2.2 Restricted Equivalent Functions

Restricted equivalence functions (REFs) [1, 2] have been proposed in image processing
in order to obtain sequences of optimal thresholds in images with several objects [3].

Definition 1. A REF, f , is a mapping [0, 1]2 −→ [0, 1] which satisfies the following
conditions:

1. f(x, y) = f(y, x) for all x, y ∈ [0, 1]
2. f(x, y) = 1 if and only if x = 1
3. f(x, y) = 0 if and only if x = 1 and y = 0 or x = 0 and y = 1
4. f(x, y) = f(c(x), c(y)) for all x, y ∈ [0, 1], c being a strong negation.
5. For all x,y,z ∈ [0, 1], if x ≤ y ≤ z, then f(x, y) ≥ f(x, z) and f(y, z) ≥ f(x, z)

For example, g(x, y) = 1 − |x− y| satisfies conditions (1)-(5) with c(x) = 1 − x
for all x ∈ [0, 1]. A similarity measure based on REFs between linguistic terms is here
proposed in order to enhance the inference engine of Bousi Prolog.



3 Similarity between linguistic terms using restricted equivalence
functions

Firstly, a new similarity measure is proposed. This measure employs a restricted equiv-
alence function in order to compute an approximation degree from the membership
values which are calculated for each element of a linguistic term.

Definition 2. Given two linguistic terms A, B defined on the domain {u1, . . . , un}
whose membership values are µA = {µA(u1) . . . , µA(un)} and µB = {µB(u1), . . . , µB(un)}
respectively. A similarity measure between A and B is defined as:

SREF (A,B) =
∑n
i=0(REF (µA(ui), µB(ui))/n

Secondly, we recall similarity concept proposed in [4]. In this definition, similarity
conditions are enumerated.

Definition 3. A mapping S : A × B → [0, 1], S is a similarity measure if satisfies the
following properties.

1. 0 ≤ S(A,B) ≤ 1
2. If A = B then S(A,B)=1
3. S(A,B)=S(B,A)
4. If A ⊆ B ⊆ C then S(A,C) ≤ S(A,B) and S(A,C) ≤ S(B,C)

Finally, we prove that SREF is a similarity measure which can be established be-
tween linguistic terms. It is formalized with the following proposition.

Proposition 1. A function SREF is a similarity measure between linguistic terms.

Proof. We are going to prove that SREF satisfies the similarity conditions:

(i) By Definition of REFs;
(ii) If A = B implies that ∀ ui ∈ A,B µA(ui) = µB(ui) with 1, . . . , N , hence
SREF (µA(ui), µB(ui))=1.

iii) Direct by the Definition;
iv) A partial order is established, hence µA(ui) ≤ µB(ui) ≤ µC(ui), what implies

that:
1. SREF (µA(ui), µB(ui)) ≥ SREF (µA(ui), µC(i)) and;
2. SREF (µB(ui), µC(ui)) ≥ SREF (µA(ui), µC(ui)) by the Definition and by

the property (5)
Hence, we have:
1. SREF (µA(ui), µC(ui) ≤ SREF (µA(ui), µB(ui)) and;
2. SREF (µB(ui), µC(ui)) ≤ SREF (µA(ui), µC(ui))

2

Example 2. Suppose three linguistic terms defined by using the membership values:



A = {1.0, 0.5, 0.25, 0.0}
B = {1.0.0.5, 0.25, 0.0}
C = {1.0, 1.0, 1.0.1.0}

Similarity can be computed between linguistic terms A,B and C by using SREF :

SREF (A,B) = (1, 1, 0.75, 0.5) = 0.8
SREF (A,C) = (1, 0.5, 0.25, 0) = 0.4
SREF (B,C) = (1, 0.5, 0.5, 0.5) = 0.6.

The similarity SREF fulfills the similarity conditions:

1. 0 ≤ SREF (A,C) ≤ SREF (B,C) ≤ SREF (A,B) ≤ 1.0
2. Let D={1.0, 0.5, 0.25, 0.0} be a linguistic term, then SREF (A,D) = 1.0.
3. SREF (A,D) = SREF (D,A), analogously for the rest of linguistic terms.
4. A ⊆ B ⊆ C what implies that SREF (A,C) ≤ SREF (A,B) and SREF (A,C) ≤
SREF (B,C)

4 Implementation and Evaluation

We have implemented and incorporated this new measure of similarity into the Bousi
Prolog system. The linguistic variables of the example 1 can be programmed in Bousi
Prolog as follows:

% linguistic variable
:-domain(age(0,100,years)).
:-fuzzy_set(age,[young(0,0,30,50),

middle(20,40,60,80),
old(50,80,100,100)]).

% facts
person ( john , young ).
person ( mary , age#35 ).
person ( paul , middle ).
person ( warren , old ).

Then, linguistic variables are compiled in a set of proximity equations together with
the rest of the program. The program could be a set of fact representing age’s people.
We can now compare the original similarity measure (explained in [8]) with the measure
SREF . A set of proximity equations generated by using the original similarity measure
and a set of proximity equations generated by using SREF is shown in the Table 1.

Note that, SREF allows to compute approximation degrees upper than the original
one and to found new relationship. For example, it is capable of founding relationship
between the linguistic term “young” and “old”. Also, the approximation degree between
“middle” and “old” is upper than the obtained by the original measure.

Continuing with example, related to the linguistic variable Age and taking the
clauses of Table 1. If we ask about what people are young, “?-person(X,young).”,
the BPL system answers:



Dubois-Prade-Testamale Restricted equivalence
functions

young ∼ age35 = 0.8. young ∼ age35 = 0.8.
middle ∼ age35 = 0.8. middle ∼ age35 = 0.8.
old ∼ age35 = 0.0. old ∼ age35 = 0.0.
young ∼ middle = 0.4. young ∼ middle = 0.4.
young ∼ old = 0.0. young ∼ old = 0.2.
middle ∼ old = 0.3. middle ∼ old = 0.4.

Fig. 1. Proximity Equations versus Proximity Equations based on REF.

X=john with 1.0 ;
X=mary with 0.8 ;
X=paul with 0.4 ;
X=warren with 0.2

With the incorporation of SREF in the core of the system, it is capable of obtaining
more answers.

5 Conclusions and Future Work

A new similarity measure between linguistic terms has been proposed. We have for-
mally defined it and proved that it fulfills similarity conditions. A experimental com-
parison by incorporating it in the core of the Bousi Prolog system has been analyzed.
We have shown that restricted equivalence functions can be used as a measure of simi-
larity between linguistic terms which allows us to enhance the Bousi Prolog inference
engine.
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Abstract. In any online adaptation scheme, two important phenomena should 

be taken into consideration; parameter shadowing and parameter interference. 

To alleviate these problems, in this paper a sliding window based online adapta-

tion method for fixed-structure Radial Basis Function Neural Networks 

(RBFNNs) is proposed. The method is capable of dealing with the two phe-

nomena, but also can update the underlying model using the new arriving sam-

ples reflecting, to a good extent, new regions in the input-output space. The 

online adaptation process requires a small update rate, while maintaining a good 

level of accuracy of the updated model. 

Keywords: Convex Hull, Multi Objective Genetic Algorithm, Online Adapta-

tion Process, Radial Basis Function Neural Networks, Time Series Models. 

1 Introduction 

When a system to be modelled is time-varying (i.e., its dynamics and operating re-

gions change over time), either the model must be retrained or must be adapted 

online. In order to do this, sequential learning methods, also called online learning 

methods, are applied. Regarding the model structure, online learning methods are 

categorized into two main classes. In the first class, the structure of the model, trans-

lated into the number of hidden neurons/layers and  the input features employed, is 

constant over the adaptation process and only the parameters are adjusted (please see 

[1, 2]); In the second class, focusing only on the model topology, hidden neurons are 

inserted or removed from the model structure using specific growing and pruning 

algorithms, respectively (please see [3, 4]). In this paper, a new online adaptation 

method based on the convex hull concept and a sliding-window technique to update 

fixed-structure RBFNN models is proposed. This method is an extension of the ones 

proposed in [2]. The use of the two concepts, convex hull and sliding window, ena-
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bles the proposed method not only to maintain the previous mappings (i.e., avoiding 

the parameter interference phenomenon) but also significantly prevents from unneces-

sary updates (i.e., avoiding the parameter shadowing phenomenon). This paper is 

organized as follows. The new method is introduced in Section 2. Simulation results 

obtained from a case study are presented in Section 3. A comparison of the perfor-

mance of the proposed method with other techniques is given in Section 4. Finally, 

conclusions and future work are presented in Section 5. 

2 Proposed Online Adaptation Method 

The idea behind the proposed method is updating the underlying model only the new 

arriving sample at any time instant 𝑘 changes the range of the input-output space. In 

this case, the current convex hull is updated with the new sample, and included in the 

training sliding window. The method employs not only a training window, but also an 

additional sliding window. The size of both sliding windows is constant throughout 

the online adaptation process and they are managed by a convex hull based policy 

which benefits from the policy proposed in [2], hereinafter called F-R policy. Once 

the sliding windows are updated, by checking the two update criteria introduced in 

[2], the model’s parameters are adjusted using a Levenberg-Maquardt method. Main-

ly, the proposed method can be summarized into three steps, discussed below. 

2.1 Evaluation of the Arriving Sample 

At each time instant, a new arriving sample is evaluated to see whether it leads to a 

new range of input-output space, or not. The new sample is compared with the current 

convex hull. The new sample is considered as an informative sample when it is locat-

ed outside the current convex hull, meaning that a new range of input-output space 

must be determined, including the new point. The dimension of both the new arriving 

sample and the convex hull vertices is equal to the number of inputs of the involving 

RBFNN model plus one, since the model has only one output. To determine whether 

the new sample is located outside the current convex hull or not, a convex hull algo-

rithm is applied on a set containing the vertices of current convex hull and the new 

sample. If the new sample is marked as a new vertex of the convex hull, it is definite-

ly located outside the current convex hull; otherwise, it is considered as an inner 

point. To locate the new point with respect to the current convex hull, a heuristic 

along with the ApproxHull method, proposed in [5], is applied. The heuristic uses a 

user-defined distance threshold 𝛽 to determine whether the new point is likely located 

outside the convex hull or not. 

2.2 Sliding Windows Update 

Typically, in sliding windows online algorithms, a FIFO management scheme is used 

in the management of the window. In the proposed online adaptation method, two 

management schemes can be applied to the training and the additional sliding win-
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dows: one is the F_R policy and the other is a new convex hull based policy proposed 

in this work. The idea behind the F_R policy is updating the sliding window 𝑻 with 

the new sample 𝒑 if  𝒑 brings new information to 𝑻, while keeping a desirable level of 

diversity in the window. To achieve this goal, a dissimilarity measure based on Eu-

clidean distance is used. When 𝒑 is presented to the model, two steps should be per-

formed to update 𝑻. The first one is whether  𝒑 should be inserted into 𝑻. If so, the 

second one is which sample of 𝑻 should be replaced with 𝒑, since the size of 𝑻 is 

assumed to be constant throughout the online adaptation process. For the first and 

second point, two criteria called Include and Exclude are used, respectively. The In-

clude criterion checks whether 𝒑 has enough dissimilarity to all points of 𝑻. To do 

this, the Euclidean distances between 𝒑 and all points are computed and, if all dis-

tances are greater than a user-defined threshold 𝜂, point 𝒑 is inserted into 𝑻. The main 

idea behind the Exclude criterion is to randomly remove one of two points in 𝑻 which 

have the largest similarity (i.e., the minimum Euclidean distance) among all pairs of 

points. The proposed convex hull based policy is introduced below. 

 

A convex Hull Based Policy. If p is considered as an outer point with respect to the 

current convex hull, the current convex hull is updated considering p as a new vertex. 

In this step, if some vertices, denoted by in, of the current convex hull are marked as 

inner points by ApproxHull, they are replaced with points extracted from the addition-

al sliding window. These points, denoted as out, are selected as the ones with the 

largest dissimilarity to the vertices in the current convex hull. The in and out points 

are then swapped between sets. p is inserted into the training window, and the sample 

to be extracted is determined using the F-R policy. If p is not inserted into the training 

window, it is considered to be inserted into the additional window employing by the 

F-R policy. 

From the implementation point of view, the sliding windows can be considered as 

matrices of size 𝑛𝑠×𝑑 where 𝑛𝑠 and 𝑑 denote the number and the dimension of points, 

respectively (in this case 1548 x 10 and 500 x 10, for the training and additional slid-

ing windows). 

 

2.3 Parameters Update 

The idea behind the procedure of parameters update in this work is the same as that 

used in [2]. We assume that the change of dynamics of most processes is gradual over 

a period of time. Hence, the underlying model does not need necessarily to be updated 

whenever a new sample arrives and is inserted into the training sliding window. Addi-

tionally, frequently updating parameters over a period of time not only is translated in 

an extra computational cost, but also may cause over-training. In the LM method, the 

training process ends when two termination criteria are met simultaneously: 

 

 (1) 

 
(2) 

 



4 

In the previous equations,  1k f k    and  and  denote the value of the 

MSE obtained with the current parameters update and with the previous parameters, 

respectively.  is the gradient vector of the MSE and  is a resolution parameter 

denoting a desired correct number of digits in the solution. If one of them is not met, 

the model parameters are updated by the LM method starting with the parameters 

obtained in the last update until the two criteria are met. As an alternative terminating 

criterion, the early-stopping method can be used, using the additional sliding window 

as a test set. 

 

3 Simulation Results 

To evaluate the performance of the proposed online adaptation method, a case study 

was considered. In this study, a time series Nonlinear Auto Regressive (NAR) model 

was chosen to compute the one-step-ahead value of the Outside Air Temperature 

(OAT). The corresponding models were designed offline using one execution of a 

Multi-Objective Genetic Algorithm (MOGA), discussed in [6]. Regarding the 

MOGA’s parameters, both the maximum number of generations and the population 

size were set to 100. The early-stopping method was applied with a maximum of 100 

iterations. After one complete run of MOGA, one model was selected from the non-

dominated set for the case study.  

3.1 Case Study: OAT  Model for the University of Almeria 

The data provided by the University of Almeria has been collected over the years 

2010 to 2012, including climate variables such as outside air temperature, outside air 

humidity, outside solar radiation, etc. In the design process, the data in the range 02-

Sep-2010 to 11-Sep-2010 (i.e., 10 days) with a sample rate of 5 minutes was used to 

create the training, testing and validation sets with 1548, 516 and 516 points, respec-

tively. ApproxHull was applied on the whole data which resulted in 880 convex hull 

points that were included in the training set. In this process, the range of features con-

sidered by MOGA comprised the first 48 lags (i.e., corresponding to the first 4 previ-

ous hours), together with 25 lags centered on the sample corresponding to one day 

before (1 hour before and 1 hour after). Therefore, 73 features were considered by 

MOGA, and a RBFNN model with 9 inputs and 14 hidden neurons was selected from 

the non-dominated set. To simulate the online adaptation process, 12 periods over the 

years 2010 and 2011 were considered. The samples of each period were normalized in 

the range [−1,1]. In this case study, two groups of experiments were considered. Each 

group included three experiments. For all experiments, 𝜂 (the user-defined threshold 

used in Include criterion of F-R policy, please refer to Section 2.2) was set to 0.005. 

For the first and second group, 𝜏𝑓 was set to 0.001 and 0.0001, respectively. For the 

second group, the early-stopping method was considered. For both groups,  𝛽 (the 

user-defined distance threshold used in the heuristic proposed to evaluate the arriving 
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sample, please refer to Section 2.1) was taken from {0.0, 0.1, 0.5}. For all experi-

ments, the online adaptation process starts with the parameters’ values obtained in the 

offline MOGA design. The model is subsequently updated over the periods in time 

order. In this procedure, at the beginning of each period, the online adaptation process 

continues with the last update of the model over the previous period. For all experi-

ments, the sizes of the training and the additional sliding window size were set to 

1548 and 500, respectively. The statistical and evaluation results obtained from the 

two groups of experiments are given in Tables 1 and 2, respectively. In Table 1, 𝑛𝑇 

and 𝑛𝐴 denote the average number of samples which have been inserted into the train-

ing and additional sliding window over all periods for all experiments, respectively. 

𝑛𝑅 refers to the average number of samples which have been rejected from inserting 

into both the training and additional sliding windows over all periods for all experi-

ments. 𝑛𝑈 and 𝑛𝐼 denote the average number of parameter updates and average num-

ber of iterations of training process per each update over all periods for all experi-

ments, respectively. 𝑛𝐶𝐻 denotes the average number of convex hull vertices at the 

end of the online adaptation process. As it can be seen in Table 1, 𝑛𝑈 is much smaller 

than 𝑛𝑇. This result reveals the fact that the proposed method can prevent unnecessary 

parameter updates whenever the training sliding window is updated due to the inser-

tion of the new arriving sample. For all experiments, the initial and updated models 

have been evaluated over each period. In Table 2,  𝜌48
𝑖  and 𝜌48

𝑢  denote the average of 

the scaled 48-steps-ahead RMSE associated with the initial (offline) and the updated 

model at the end of the period over all experiments, respectively. The bold values in 

Table 2 refer to the best results. As it can be seen, while the updated model obtains a 

good performance throughout the year, this does not happen with the offline model. 

Table 1. Statistical results of experiments. 

𝑛𝑇 𝑛𝐴 𝑛𝑅 𝑛𝑈 𝑛𝐼 𝑛𝐶𝐻 

3306 55509 368 50 5.47 163 

Table 2. Evaluation results of experiments. 

 Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

𝜌48
𝑖  0.16 0.39 0.31 0.47 0.40 0.31 0.22 0.12 0.10 0.08 0.08 0.05 

𝜌48
𝑢  0.11 0.16 0.16 0.15 0.16 0.15 0.14 0.13 0.11 0.11 0.11 0.09 

 

To clarify how the sliding window policies perform, the contents of the training slid-

ing window at the end of the period Aug-2011, for both groups of experiments are 

shown in Figs. 1 and 2. In these figures, it is shown the number of samples (y-axis) 

entering the sliding window in the corresponding period (x-axis), i.e., how the 1548 

samples are decomposed per period. As it can be observed, for each pair of experi-

ments where the same 𝛽 has been used, the pattern of training sliding window update 

is similar, resulting in somehow the same sliding window at the end of the last period, 

Aug-2011. Moreover, as it can be observed, by increasing 𝛽, the update rate of the 

initial training sliding window containing samples of Sep-2010 is increasing, and 

gradually, the samples of Sep-2010 are being replaced with the new arriving samples 
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of the other periods. Since the training sliding window managed by the both policies, 

involves a diversity of samples over all the periods, it can overcome the common 

FIFO policy disadvantage, which forgets information of past periods. 

 

 

(a) 

 

(b) 

Fig. 1. Comparison of the training sliding windows for the first 

experiments (𝜂 = 0.005, 𝛽 = 0.0) of the first (a) and the 

second (b) groups. 
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(a) 

 

(b) 

Fig. 2. Comparison of the training sliding windows for the third 

experiments (𝜂 = 0.005, 𝛽 = 0.5 ) of the first (a) and the 

second (b) groups. 

4 Comparison with Other Methods 

Using the data used in the last section, the results obtained in the best experiment of 

the proposed method, denoted as CSWNLM, are compared with those obtained of 

employing the methods proposed in [2]. As it has been referred, in [2] two methods 

using a sliding window strategy, called SWNLM and SAWNLM were proposed, and 

served as the basis of the method introduced in this work. In SWNLM, the sliding 

window is managed using FIFO policy, while in the SAWNLM, the sliding window is 

managed by F-R policy.  The statistical results of the three methods are shown in 

Tables 3. The total number of new samples presented to the model over the all periods 

is 59184. The statistics stated in Table 3 are ones used in Table 1. As it can be seen in 

Table 3, the total number of new arriving samples which have been inserted into the 

training sliding window (𝒏𝑻), the total number of updates (𝒏𝑼) and the total number 

of iterations (𝒏𝑼×𝒏𝑰) in CHSWNLM are much smaller than in the other methods. 



8 

The average of scaled 48-steps-ahead RMSEs over all periods for CHSWNLM, 

SAWNLM and SWNLM are 0.1219, 0.1339 and 0.575, respectively. It shows that the 

CHSWNLM has slightly better performance than SAWNLM and SWNLM has the 

worst performance. 

Table 3. Comparison of statistical results obtained by CHSWNLM, SWNLM and SAWNLM. 

 𝑛𝑇 𝑛𝐴 𝑛𝑅 𝑛𝑈 𝑛𝐼 

CSWNLM 414 58393 377 24 4.25 

SWNLM 59184 - 0 270 2.77 

SAWNLM 58794 - 390 52 3.21 

 

5 Conclusions 

In this paper, a sliding window based online adaptation method was proposed to up-

date fixed-structure RBFNN models, previously designed offline. The proposed 

method is an extension of the ones proposed in [2], employing the convex hull con-

cept, incorporating the current sample in the training sliding window if it lies outside 

the current convex hull. Simulation results showed that the proposed method can sig-

nificantly improve the performance of offline designed models for time-varying pro-

cesses. In addition, it presents a performance similar to SAWNLM and has signifi-

cantly better performance than SWNLM, requiring for that a much smaller number of 

insertions in the sliding window, number of updates and total number of iterations. 
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Abstract. In this paper we present a population based metaheuristic for solving the Minimum 

Latency Problem, which is the combination of bacterial evolutionary algorithm with local search 

techniques. The algorithm was tested on TSPLIB benchmark instances, and the results are com-

petitive in terms of accuracy and runtimes with the state-of-the art methods. Except for two in-

stances our algorithm found the best-known solution, and for the biggest tested instance it out-

performed the best-known solution. The runtime was on average 30% faster than the most effi-

cient method in the literature. 

Keywords: discrete optimization, Minimum Latency Problem, Delivery Man Problem, 

Traveling Repairman Problem, metaheuristic 

1 Introduction 

1.1 The Minimum Latency Problem 

The Minimum Latency Problem is a variant of the Traveling Salesman Problem. It 

also called the Traveling Repairman Problem or the Delivery Man Problem. The task 

is to find a Hamiltonian circuit that minimalize the sum of arrival times at each nodes. 

The Minimum Latency Problem has also many application areas: logistics, customer-

centric routing, scheduling and data retrieval in computer networks. 

The Minimum Latency Problem can be defined as a graph search problem with edge 

weights (1): 

𝐺𝑀𝐿𝑃 = (𝑉𝑐𝑖𝑡𝑖𝑒𝑠 , 𝐸𝑐𝑜𝑛𝑛) 

𝑉𝑐𝑖𝑡𝑖𝑒𝑠 = 𝑣0U{𝑣1, 𝑣2, … , 𝑣𝑛}, 𝐸𝑐𝑜𝑛𝑛 ⊆ {(𝑣𝑖 , 𝑣𝑗)|𝑖 ≠ 𝑗} (1) 

𝐶 ∶  𝑉𝑐𝑖𝑡𝑖𝑒𝑠 × 𝑉𝑐𝑖𝑡𝑖𝑒𝑠 → 𝑅, 𝐶 = (𝑐𝑖𝑗)(𝑛+1)×(𝑛+1) 

C is called cost matrix, where cij  the cost of going from vertex i to vertex j. 

The goal is to find a permutation of vertices (𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛) that minimalizes the sum 
of arrival times (Csum) at each nodes (2). 

arrival time at pi node:    𝐶𝑝𝑖
= 𝐶𝑣𝑜,𝑝1

+ ∑ 𝐶𝑝𝑗−1,𝑝𝑗

𝑖
𝑗=2   i=1…n 



𝐶𝑠𝑢𝑚 = ∑ 𝐶𝑝𝑖

𝑛
𝑖=1     (2) 

 

1.2 Our previous work 

In recent years we compared various population based algorithms (genetic algo-

rithm [4], bacterial evolutionary algorithm [9], particle swarm algorithm [5] and their 

memetic versions [2], [3]). 

In 2016 we presented a Discrete Bacterial Memetic Evolutionary Algorithm 

(DBMEA) for The Traveling Salesman Problem [6], [7]. The algorithm showed good 

properties: it founded optimal and near-optimal solutions for instances up to 1000 ver-

tices. In 2016 we presented an improved Discrete Bacterial Memetic Evolutionary Al-

gorithm with bounded local search which led to significant improvement in runtime 

[12].  

Considering the above we came to the conclusion is worth to examine our algorithm 

on other TSP variants. 

2 Our method 

Our method is called Discrete Bacterial Memetic Evolutionary Algorithm (DBMEA). 

The DBMEA is a memetic algorithm, a combination of the bacterial evolutionary algo-

rithm and 2-opt, 3-opt local search. The process of the DBMEA algorithm can be seen 

in Fig. 1. 

Memetic algorithms combine the global search evolutionary algorithms with local 

search methods, so eliminate the disadvantages of both methods [8], so in many cases 

the addition of local search approaches usually can improve significantly the perfor-

mance of the classical evolutionary algorithms (both the best solution and the conver-

gence speed). 

Creating the Initial Population. 

The Population is a group of individuals which mean solutions for the problem. In 

the DBMEA algorithm the individuals represent possible tours for the Minimum La-

tency Problem. 

In the DBMEA for Minimum Latency Problem the individuals in the initial Popu-

lation are generated randomly. 



 

Fig. 1. The process of DBMEA algorithm 

Bacterial mutation.  

Bacterial mutation optimizes the bacteria individually.  It tries to improve the bac-

terium by modifying randomly the segments in the clones. As a result of the bacterial 

mutation the bacteria are more or equally fit than the original bacteria. 

Gene transfer.  

The gene transfer operation allows the transfer of information between the bacteria 

in the population in the hope that the bacteria become better and better. In the gene 

transfer operation a “good” bacterium transfers a part of its solution to a “bad” bacte-

rium. 

Local search.  

Local search techniques are crucial parts of every memetic algorithm because they 

are responsible for the improvement of the candidate solutions in the population.  

In the DBMEA for solving the Minimum Latency Problem the local searches are 

the 2-opt and 3-opt techniques.  

The execution time of the local search was reduced by examining only the close 

vertices to every vertex. 

2-opt local search.  

2-opt local search replaces two edge pairs in the original graph to reduce the length 

of the tour. Itis stopped when no further improvement is possible. 

3-opt local search.  

The 3-opt local search replaces edge triples. The deleting of three edges results three 

sub-tours. There are four possible ways to reconnect these sub-tours. The output of the 

3-opt step is always the less costly tour.  



3 Computational results 

The performance of our algorithm was compared with the state-of-the art methods, 

GILS-RVND heuristic [11] and Salehipour’s method [10] in terms of solution‘s quality 

and runtime. 

Our algorithm was tested on an Intel Core i7-7500U 2.7 GHz, 8GB RAM work-

station. The GILS-RVND was executed an Intel Core i7 2.93 GHz, with 8.0 GB of 

RAM memory. Salehipour’s method was tested on Pentium 4, 2.4 GHz processor and 

512 MB RAM. 

In Table 1. the results for TSPLIB instances selected by Abeledo et al. [1] can be 

seen. Our algorithm found the best-known solution for all instances, and the average 

runtime was shorter than in the case of GILS-RVND heuristic. 

 

Table 1. Results for TSPLIB instances selected by Abeledo et al. 

Instance 
Best 

known 

DBMEA GILS-RVND 

Best 

value 

Avg. 

value 
Avg. Sec 

Best 

value 

Avg. 

value 
Avg. Sec 

dantzig42 12528 12528 12528 0,19 12528 12528 0,16 

swiss42 22327 22327 22327 0,13 22327 22327 0,16 

att48 209320 209320 209320 0,76 209320 209320 0,32 

gr48 102378 102378 102378 0,57 102378 102378 0,33 

hr48 247926 247926 247926 0,38 247926 247926 0,3 

eil51 10178 10178 10178 1,01 10178 10178 0,49 

berlin52 143721 143721 143721 1,13 143721 143721 0,46 

brazil58 512361 512361 512361 0,56 512361 512361 0,78 

st70 20557 20557 20557 2,26 20557 20557 1,65 

eil76 17976 17976 17976 2,01 17976 17976 2,64 

pr76 3455242 3455242 3455242 1,64 3455242 3455242 2,31 

rat99 57986 57986 57986 10,28 57986 57986 11,27 

kroA100 983128 983128 983128 5,24 983128 983128 8,59 

kroB100 986008 986008 986008 6,92 986008 986008 9,21 

kroC100 961324 961324 961324 4,83 961324 961324 8,17 

kroD100 976965 976965 976965 5,73 976965 976965 8,46 

kroE100 971266 971266 971266 5,66 971266 971266 8,31 

rd100 340047 340047 340047 7,60 340047 340047 8,52 

eil101 27513 27513 27517,2 16,64 27513 27513 12,76 

lin105 603910 603910 603910 7,59 603910 603910 8,42 

pr107 2026626 2026626 2026626 6,41 2026626 2026626 10,89 

Average       4,50     4,96 

 

In Table 2. and Table 3. it can be seen the comparison of DBMEA algorithm with 

GILS-RVND heuristic and Salehipour’s method on TSPLIB instances selected by 

Salehipour et. al. in terms of solution’s quality and runtimes. Expect for two instances 

(lin318 and pr439) our method found the best-known solution, and for the biggest tested 

instance (att532) it found even a better solution than the best-known. The average so-

lution (averaging 10 runs) was in the case of all instances the same or shorter than in 



the case of GILS-RVND heuristic. The DBMEA was much faster than the two other 

methods. 

Table 2. Solutions for TSPLIB instances selected by Salehipour et al. 

Instance 

Best 

known 

DBMEA   GILS-RVND 
Salehipour 

et. al. 

Gap [%] 

GILS-RVND 

Gap [%] 

Salehipour 

et. al. 

Best 

value Avg. value 

Best 

value 

Avg. 

value Best value 

Best 

value 

Avg. 

value Best value 

st70 19215 19215 19215 19215 19215 19553 0,00 0,00 -1,73 

rat99 54984 54984 54984 54984 54984 56994 0,00 0,00 -3,53 

kroD100 949594 949594 949594 949594 949594 976830 0,00 0,00 -2,79 

lin105 585823 585823 585823 585823 585823 585823 0,00 0,00 0,00 

pr107 1980767 1980767 1980767 1980767 1980767 1983475 0,00 0,00 -0,14 

rat195 210191 210191 210285,7 210191 210335,9 213371 0,00 -0,02 -1,49 

pr226 7100308 7100308 7100308 7100308 7100308 7226554 0,00 0,00 -1,75 

lin318 5560679 5562148 5565243,1 5560679 5569820 5876537 0,03 -0,08 -5,35 

pr439 17688561 17693137 17707037,33 17688561 17734922 18567170 0,03 -0,16 -4,71 

att532 5581240 5578872 5584786,2 5581240 5597867 184484351 -0,04 -0,23 -69,76 

 

Table 3. Runtimes for TSPLIB instances selected by Salehipour et al. 

Instance 
DBMEA GILS_RVND Salehipour et. al. 

Avg. sec Avg. sec Avg. sec 

st70 1,91 1,51 2,23 

rat99 9,87 9,47 9 

kroD100 5,29 6,9 11,02 

lin105 4,38 6,19 12,23 

pr107 4,29 8,13 3,33 

rat195 70,20 75,56 311,97 

pr226 43,37 59,05 239,56 

lin318 268,53 220,59 455,6 

pr439 421,75 553,74 5614,74 

att532 1078,67 1792,61 5005,32 

Average 190,83 273,38 1166,50 

 

4 Conclusions 

In this paper an evolutionary metaheuristic was presented for solving the Minimum 

Latency Problem. The algorithm is efficient because except for two instances found the 

best-known values, for the biggest tested instance it found even a better solution than 

the best-known value and the average runtime was smaller than in the case of the state-

of-the-art methods for the problem. 

In our further work we plan to test DBMEA algorithm on other TSP variants (time 

dependant TSP, multi-TSP etc.). 

                                                           
1  calculate Euclidean distances instead of ATT pseudo-Euclidean distances  
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Abstract. This paper proposes a methodology to obtain fuzzy Pareto
optimal frontier of multi-objective fuzzy geometric programming prob-
lem. The method that we derive here does not depend on the degree-
of-difficulty of the problem under consideration. A study on the fuzzy
convexity of the posynomials involved is also given here. Fuzzy geometric
and algebraic approaches have been considered for the said optimization
problem and is supported with a numerical example.

Keywords: Fuzzy convexity; Fuzzy Monomial; Fuzzy Posynomial; Geometric
Programming Problem; Multi-Criteria Decision Making; Fuzzy Geometry.

1 Introduction:

Geometric programming (GP) problem, a type of mathematical optimization,
characterized by objective and constraint functions of a special form was in-
troduced by Duffin et al. (1967)[5]. Several engineering applications ([3, 9, 10,
12–14]) have investigated the effectiveness and importance of geometric program-
ming. Effective algorithms have been developed for solving geometric program-
ming problems ([11, 15, 18, 16]). To tackle the uncertainty factors, probabilistic
approaches have received attention and stochastic geometric programming has
been evolved. Recently in accordance with the advancements of the theory of
fuzzy sets and applications, fuzzy geometric programming models have been
introduced by Cao [2] in 1987. Geometric programming is a tool to solve a
special class of nonlinear programming problems where objective function and
constraints are posynomials. Shivanian and Khorram [17] have proposed mono-
mial geometric programming subject to fuzzy relation inequalities. In 2016, Zhou
et al[19] also studied a class of posynomial geometric programming problem that
considers the minimization of a posynomial subject to fuzzy relational equations
with max-min composition.

In this paper a methodology has been suggested to solve fuzzy multi objective
geometric programming problem. The advantage of the proposed methodologies
is that, it can capture the solutions even for discrete objective function and/or
constraint sets.The degree-of-difficulty (termed as DD) of a geometric program-
ming problem is defined as total number of terms - (total number of variables +
1). This characteristic measure plays an important role when we solve a geomet-
ric programming problem. The larger the DD, the harder the problem to solve.



If the DD of a problem is zero, it is possible that the problem can be solved
readily. So one always tries to reduce the DD as much as one can by applying
his/her engineering knowledge and common sense (Beightler and Phillips[1]).
The proposed fuzzy methodology can work efficiently even for negative degree
of difficulty.

This paper is arranged as follows: the properties of fuzzy posynomial and
its convexity is studied in section 2. The methodology for multi-objective opti-
mization is described in section 3 along with a numerical example in section 4.
Section 5 concludes the work with some remarks.

2 Fuzzy Posynomial

In order to develop the methodology for solving multi-objective fuzzy posyno-
mial geometric programming problem, it is necessary to study the convexity or
concavity of the fuzzy posynomial. Let us consider the fuzzy posynomial f̃(X)
as

f̃(X) =
m∑

j=1
c̃j

m∏

i=1
x
aij
i =

m∑

j=1
Uj (say) (1)

where X = (x1, x2, ..., xn) is a decision variable vector of the optimization prob-
lem and c̃j = (cj , cj , c̄j)LR is an LR type fuzzy number for all j. Here c̃js are all
assumed to be positive fuzzy numbers and the exponents aijs are assumed to be
real constants (positive, negative or zero), ∀i, j. And the decision variables xis,
∀i are non-negative.

In general, the above mentioned posynomial f̃(x) is not convex. In optimiza-
tion set up, the notion of convexity is important to ensure global optimality. Thus
the study of convexity is necessary for all posynomial functions.A posynomial is
a combination of a monomials. If each term of posynomials, i.e. the monomials
are convex, then the posynomial is convex. For fuzzy geometric programming
problem of minimization type if the posynomial objective function and the con-
straint set having posynomial functions are convex, then the obtained optimal
solution is global optimal.

Lemma 1. For a twice differentiable fuzzy monomial Ũj = c̃jx
a1j
1 x

a2j
2 ...x

anj
n ,

where c̃j is a positive fuzzy number and aij-s, i = 1, 2, ..., n and j = 1, 2, ...,m
are real constants, let H̃(x) be the Hessian matrix of Ũj. The determinant of kth
principal minor can be expressed as

H̃k(x) = (−c̃j)K(1−
K∑

i=1
aij)

K∏

i=1
aij

K∏

i=1
x
Kaij−2
i

n∏

i=k+1
x
aij
i (2)

Here Ũj : Rn → R is a fuzzy function which may be continuous or discrete, de-
pending on the domain of the fuzzy function. If the fuzzy function is continuous,
then the following LR-interpretation of the fuzzy function of X = (x1, x2, ..., xn)



at X = X0 is given by,

dŨj(x)
dx

∣∣∣∣
x0

=
(
dUj(x)
dx

∣∣∣∣
x0

,
dαj(x)
dx

∣∣∣∣
x0

,
dβj(x)
dx

∣∣∣∣
x0

)

LR

(3)

where αj(x) and βj(x) are increasing function i.e. dαj(x)
dx >0,dβj(x)

dx >0 in the
neighborhood of X0. Similarly, if both αj(x) and βj(x) are decreasing, i.e.
dαj(x)
dx <0 and dαj(x)

dx <0 then

dŨj(x)
dx

∣∣∣∣
x0

=
(
dUj(x)
dx

∣∣∣∣
x0

,−dβj(x)
dx

∣∣∣∣
x0

,−dαj(x)
dx

∣∣∣∣
x0

)

RL

(4)

Again if dαj(x)
dx <0 and dβj(x)

dx >0 in the neighborhood of x0, then we get,

dŨj(x)
dx

∣∣∣∣
x0

=
(
dUj(x)
dx

∣∣∣∣
x0

, 0,−dαj(x)
dx

∣∣∣∣
x0

)

L

⋃(
dUj(x)
dx

∣∣∣∣
x0

, 0,−dβj(x)
dx

∣∣∣∣
x0

)

R

(5)
Consequently, if dαj(x)

dx >0 and dβj(x)
dx <0 in the neighborhood of x0, then

dŨj(x)
dx

∣∣∣∣
x0

=
(
dUj(x)
dx

∣∣∣∣
x0

,
dαj(x)
dx

∣∣∣∣
x0

, 0
)

L

⋃(
dUj(x)
dx

∣∣∣∣
x0

,
dβj(x)
dx

∣∣∣∣
x0

, 0
)

R

(6)

2.1 Consequences of Lemma 1

Corollary 1. If aij<0,∀i, c̃j is positive fuzzy number and xis are non-negative
for all i, then the determinant values of all the principal minors of fuzzy mono-
mial Ũj are positive. Thus H̃(x) is positive definite. Hence Ũj is a fuzzy convex
function. So the posynomial f̃(x) is also convex.

Corollary 2. If for any aij , i ∈ [1, n], akj(say)<0 but c̃j and xis are positive
then the monomial can be converted to a convex fuzzy function by considering
Zk = 1/xk.

Corollary 3. If all aijs are positive and c̃j is also positive fuzzy number with
xis as non-negative then the monomial can be fuzzy convexified considering the
following transformation,

c̃j

n∏

i=1
x
aij
i = c̃je

∑n

i=1
aij logxi (7)

Further generalization may be possible for negative fuzzy c̃js and for different
cases of aijs, which in general may be named as fuzzy signomial.



3 Solving fuzzy multi-objective geometric programming
problem

The methodology described in this section is used to solve fuzzy multi-objective
geometric programming problem. Let us consider a general fuzzy geometric pro-
gramming problem as

Minimize f̃k(x) =
mk∑

j=1
c̃jk

m∏

i=1
x
aijk
i =

mk∑

j=1
Ũjk(say), k = 1, 2, ..p

subject to g̃l(x) & 0, l = 1, 2, 3, .., q x ∈ X̃
(8)

where c̃jk ≡ (cLjk, cjk, cUjk)LR,∀ k are LR type fuzzy numbers,aijks are all real
numbers and g̃L(x)s ,∀ k are of posynomial types like f̃k(x)s.
Here we are concern about the pareto-optimal solutions in decision feasible space
X̃ of the multi objective problem. Let Ỹ be the criteria feasible region for (8). To
obtain the non-dominated points of Ỹ (1)) (for α = 1), fuzzy ideal cone method
(Ghosh and Chakraborty[8]) is needed to be restructured using fuzzy geometry
[6, 4, 7]as the feasible space as well as the criterion space is posynomial and so
piece-wise continuous. The fuzzy posynomial may be discrete or continuous. For
example, f̃(x) = x2

1x
−3
2 + 4̃x−2

1 x5
2. it is obvious that the fuzzy function is unde-

fined at (x1, x2) = (0, 0), but in all other points the function is continous. The
geometry of any fuzzy function can be realized using Ghosh and Chakraborty [6,
7] and Chakraborty and Ghosh [4]. If the fuzzy function is continuous in a cer-
tain domain, classical optimization technique is applicable to obtain extremum
of fuzzy posynomial. But if the fuzzy posynomial is piecewise continuous within
a domain then getting fuzzy derivative is quite impossible in the points of dis-
continuity. The algorithmic implementation of the following methodology may
be suggested for obtaining extremum of a fuzzy posynomial of any kind.

3.1 Capturing complete fuzzy non-dominated set

Let Ỹ be the criteria feasible region (Ghosh and Chakraborty[8]) for (8). To
obtain the non-dominated points of Ỹ (1)) (for α = 1), fuzzy ideal cone method
is needed to be restructured and solved (corresponding to a particular unit vector
β̂ ∈ Sk−1

= = Sk−1⋂Rk
= (where Sk−1 represents the unit ball in Rk)). In general,

A point x∗ in X̃ is said to be pareto optimal point or nondominated point if it
is feasible and satisfies the following condition:

(f(x∗)−Rk−1
= )

⋂
f(X) = {(f(x∗)} (9)

According to fuzzy Ideal cone method the solution of (8) can be described as
follows, provided the criteria space is continuous in nature. Let us consider
f̃(X) = (f̃1(x), f̃2(x), ..., f̃k(x))

Minimize z subject to zβ̂ = f(x) x ∈ X̃ (10)



The geometrical interpretation can be made as - the objective feasible region and
the translated non-positive orthant whose vertex is being shifted from origin to
the point f(x∗) have intersection the single point f(x∗) only, then the feasible
point x∗ is a Pereto optimal solution of the considered multi objective Problem.
If x∗ is a Pareto optimal solution,the point y∗ = f(x∗) must be a non-dominated
solution. So, in order to get a non-dominated solution, one may translate the
cone of non-positive orthant of the objective space along a particular direction
β̂ ∈ Rk

= till this cone does not touch the objective feasible region. Translation of
the cone −Rk

= along a particular direction β̂ ∈ Rk
= means that the vertex of the

cone is retained on the line zβ̂, z ∈ R . Now if the cone is being translated along
β̂ ∈ Rk

= then either the vertex of the cone touches (generates proper pareto op-
timal point) or the boundary planes may the touch the objective feasible region
(which generate either weak pareto points or non proper pareto points).
Here the cone Rk

= is used to capture non-dominated points. Geometrically, zβ̂
for z ≥ 0 represents points on the line which is directed along β and passing
through origin. For a particular z = 0, the constraints of the fuzzy multi ob-
jective problem is {x ∈ X̃(1) : zβ̂ = f̃(x)}. When z2>z1>0, z2β̂>z1β̂ and thus
z1β̂ −Rk

= ⊂ z2β̂ −Rk
=,which implies (z1β̂ −Rk

=) ∩ Ỹ (1) ⊂ (z2β̂ −Rk
=) ∩ Ỹ (1).

To obtain the fuzzy non-dominated set ỸN which is a subset of the boundary
of the criteria feasible region Ỹ , the fuzzy ideal cone methodology is applied to
the fuzzy multi-objective geometric programming problem described above. A
uniform discretization of the set Sk= = sk−1⋃Rk

= is considered for the imple-
mentation of the fuzzy ideal cone method, where Sk−1 is the K-dimensional unit
sphere.Here ỸN ,we may write as follows

ỸN =
⋃

(y∈Ỹ (1)N )

(Ỹ ∩ (y −Rk
=)) =

⋃

β̂∈Sk−1
=

(Ỹ ∩ (zβ β̂ −Rk
=))

(11)

3.2 Algorithmic implementation to solve fuzzy discrete
multi-objective Geometric Programming Problem

Here we use spherical discretization technique. We can express β̂ ∈ Sk−1 as

(cos θ1, cos θ2 sin θ1, cos θ3 sin θ2 sin θ1, ..., cos θk−1
∏k−2
i=1 sin θi,

∏k−1
i=1 sin θi),

for φi ∈ [0, π2 ], i = 1, 2, ..., (k − 1). Now we uniformly discretize each θi to
equal number of subintervals. let we divide θ1 by m number of point and θi
by round(m

∏i
l=1 sinφl) number of points, for i = 1, 2, ..., (k− 1). Now for every

point of θi we obtain min z for the transformed problem of the original geometric
programming problem. The closed-convex cone −Rk

= which is the non-positive
orthant is shifted along the direction of a particular unit vector β̂ ∈ Sk= can be
expressed as

(cos θ1, cos θ2 sin θ1, cos θ3 sin θ2 sin θ1, ..., cos θk−1
∏k−2
i=1 sin θi,

∏k−1
i=1 sin θi),



where θi is restricted between 0◦ to 90◦ and i−1, 2, ...(k−1) according to a well
known spherical discretization technique[8]. While translation of the cone −Rk

=
the vertex of the cone is restrained to stay on the line having magnitude z along
β̂, zβ̂ where z ∈ R.The vertex traces point by point the whole criteria space for
different α-levels. For a particular α, say α0 if zβ̂ touches the boundary of the α0
cut of the criteria space, the point is declared as a member of the non-dominated
frontier. Using this concept, the problem (8) can be mathematically restructured
in the following manner,

Minimize z

subject to z(cos θ1, cos θ2 sin θ1...) = [f̃(x)]α, x ∈ X̃
(12)

where X̃ is the decision feasible set and [f̃(x)]α = ([f̃1(x)]α, [f̃2(x)]α, ..., [f̃k(x)]α).
Defining the problem in a discrete or piecewise continuous domain would not
allow the formulation of the above non-linear programming problem.Since a
posynomial contains a number of singularities, the nature of the criteria space
is piecewise continuous. The following algorithm 1 is needed to search the whole
domain to obtain the non-dominated frontier.

Algorithm 1 Algorithm to solve bi-variate bi-objective fuzzy geometric pro-
gramming problem
Require: Given problem: Given a satisfaction level α ∈ [0, 1], X̃α, i.e. α cut of the

feasible space X̃ is discretized in n number of grid points, where l and k are the
indices of the array X̃α such that l, k = [1, n].

1: Set m(Number of partition of θ)
2: Set n (Number of grid point)
3: for θ = 0 to π

2 , step length π
2m

4: Set min (a large value)
5: for l = 1 to n with step length required
6: for k = 1 to n with step length required
7: if g̃α[l,k] ≥ 0, then

8: set z = f̃1α[l,k]
cosθ

9: if z = f̃2α[l,k]
sinθ

, then
10: if z < min, then
11: set min=z
12: store value of l and k
13: end if
14: end if
15: end if
16: end for
17: end for
18: end for



4 Numerical example

Let us consider the following bi-objective numerical problem where two decision
variable are considered. The fuzzy bi-objective geometric programming problem
is as follows:

Minimize f1 = x2 + 2̃, f2 = y2 + 2̃
subject to 2̃x3y−1 ≤ 10, 3̃x−2y−1 ≤ 1

2.7x− 1
3 y2 + x

2
5 y−4 + xy ≤ 250

x2(y − 5)−2 + (x− 1)−1.5 ≤ 30
(x− 1.5)2 + (y − 1.5)2 ≥ .5
x, y ≥ 0

(13)

It is equivalent to
Minimize f1 = x2 + (0, 2, 4)LR, f2 = y + (6, 7, 8)LR
subject to (1, 2, 3)LRx3y−1 ≤ 10, (2, 3, 4)LRx−2y−1 ≤ 1

2.7x− 1
3 y2 + x

2
5 y−4 + xy ≤ 250

x2(y − 5)−2 + (x− 1)−1.5 ≤ 30
(x− 1.5)2(y − 1.5)2 ≥ .5
x, y ≥ 0

(14)

Now we solve this problem using the proposed algorithm and get the complete
fuzzy non-dominated set Figure 1.

Figure 1: This is the non-dominated set of the problem



5 Conclusion

Here a methodology has been suggested to obtain solution of multi-objective
fuzzy geometric programming problem using fuzzy geometry. The method is
robust in nature as it works well even for negative degree of difficulty and effi-
cient for discrete decision space. This method may further be extended for fuzzy
signomial programming problems.
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Abstract. This paper introduces a procedure to apply Formal Concept
Analysis (FCA) to a database obtained from a locate-base social net-
work. In this way, we can know the interest of a target user and make
recommendations according to these interests.

1 Introduction

In recent years, data analysis has become a very important and useful research
topic in many sectors. One interesting task that we can perform from the infor-
mation contained in the databases is the creation of a recommendation system.
Recommendation systems have been used in many areas such as movies, books,
news, social networks, etc. Locate-base social network (LBSN) is one type of
Social Network, which allows to share the activities one person is doing via
geo-tagged user-generated multimedia content [10]. The LBSN consists of two
components: Social Network (SN) and Location. The classical SN allows the
users exchange the information, fix a meeting, post the information which is
interesting for him/her. The Location component includes the name, the Id,
longitude and latitude of each place which is visited by the user.

On the other hand, Formal Concept Analysis (FCA) is a powerful tool for
data analysis [1, 2, 5, 4, 8, 9]. The purpose of this mathematical tool is to extract
information from databases that contain objects and attributes related between
them. An interesting generalization of this theory in the fuzzy case was given
in [6, 7], where the authors consider the philosophy of the multi-adjoint paradigm
in order to provide more flexibility to this theory. In this work, we will consider
this fuzzy generalization of FCA to study the interests and habits of one user
in order to carry out a recommendation process, considering the information
obtained from a LBSN.

2 Preliminaries

In this section, we recall some preliminary definitions related to FCA. The first
one is the notion of adjoint triple since they are used to define the concept-
forming operators [3].



Definition 1. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1 × P2 → P3,
↙ : P3×P2 → P1, ↖ : P3×P1 → P2 be mappings, then (&,↙,↖) is an adjoint
triple with respect to P1, P2, P3 if the following doble equivalence holds:

x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x (1)

where x ∈ P1, y ∈ P2 and z ∈ P3.

In the environment of FCA, the posets (P1,≤1) and (P2,≤2) should be com-
plete lattices [7]. Now, the notion of multi-adjoint frame is recalled.

Definition 2. A multi-adjoint frame L is a tuple

(L1, L2, P,�1,�2,≤,&1,↙1,↖1, . . . ,&n,↙n,↖n)

where (L1,�1) and (L2,�2) are complete lattices, (P,≤) is a poset and, for
all i ∈ {1, . . . , n}, (&i,↙i,↖i) is an adjoint triple with respect to L1, L2, P .

Multi-adjoint frames are denoted by (L1, L2, P,&1, . . . ,&n).

Once a frame is fixed, we need to consider a formal context.

Definition 3. A context is a tuple (A,B,R, σ) such that A and B are non-
empty sets (usually interpreted as attributes and objects, respectively), R is a
P -fuzzy relation R : A×B → P and σ : A×B → {1, . . . , n} is a mapping which
associates any element in A×B with some particular adjoint triple in the frame.

From a multi-adjoint frame and a context, the concept-forming operators
↑σ : LB2 −→ LA1 and ↓σ

: LA1 −→ LB2 are defined by:

g↑σ (a) = inf{R(a, b)↙σ(a,b) g(b) | b ∈ B} (2)

f↓
σ

(b) = inf{R(a, b)↖σ(a,b) f(a) | a ∈ A} (3)

for all g ∈ LB2 , f ∈ LA1 and a ∈ A, b ∈ B.

Taking into account these operators, a multi-adjoint concept is a pair 〈g, f〉
such that g ∈ LB2 , f ∈ LA1 and the equalities g↑σ = f and f↓

σ

= g are satisfied.

Considering the theory of FCA, we want to provide a new mechanism to
make recommendations related to the interest of one user. In the following sec-
tion, we will introduce the data set we have considered in order to create our
recommendation system.

3 Locate-base social network

As we previously mentioned, in this work we will consider the information col-
lected by a locate-base social network (LBSN). Therefore, we need to formalize
this notion now.
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Definition 4 ([10]). The LBSN (G,C) consists of a social network G = (U,E),
where U is the set of users, E ⊆ U × U is a relation between users, where
(ui, uj) ∈ E represents a social connection between two different users ui and uj
(ui 6= uj); and C ⊆ U × L × T is a relation in which each element (u, l, t) ∈ C
represents the location l ∈ L at time t ∈ T of one user u ∈ U , where L is a set
of locations, which consists of latitude and longitude, and T is the set of times.
Every element of C is called check-in.

Usually, the user communicates by some app his/her feeling, emotion, expe-
rience, etc., in some place, the information about this place, time and user (Id)
is registered by the app and it is introduced as a check-in in the LBSN. Hence,
every day the user can collect a lot of places in which his/her was interesting on.
This information may represent the user’s interest and habits. Since the user’s
check-in depends on his/her lifestyle and previous experiences, the check-ins also
show the user’s habits. Consequently, the study of the LBSN allows the analysis
of the human’s behaviors and customs which may be useful for themself and for
business industry, marketing, advertisement, commerce, etc.

In LBSN theory, the check-in is completed with the characteristics of the
location/place in which the user is. These characteristics are called topics. The
association of each check-in with a topic is called Point-of-Interest (POI). There-
fore, the set of POIs is a relation POI ⊆ U × L × T × P , where P is the set of
topics.

In this paper we have chosen a data set from the Foursquare social network.
Table 1 shows a small example of the data set with four POI.

Table 1. Example of the Foursquare data set

UserID Data Time Loc(x,y) Topic

1 29.07.2011 00:34:05 40.760997, -73.98290 Nightlife & Spot, Food

1891 21.07.2011 17:07:59 33.91865, -118.39331 Professional & Other Places

5 24.07.2010 00:20:26 47.60635, -122.33202 Nightlife & Spot, Food

882 31.01.2011 02:14:05 37.75026, -122.20290 Stadium, Arts & Entertainment

882 21.01.2011 19:51:20 37.79540, -122.3957 Food

884 06.08.2011 00.26.50 33.50887, -112.08372 Nightlife & Spot

Concerning the topic column, sometimes the topic does not have a clear
characteristic of the place in which the check-in has been produced. For example,
the check-in for user 1 has two different characteristics: “nightlife” and “food”,
that do not exactly describe the place and so, the interest of the user. In order to
determinate the user’s interest, which we want to recommend him in one fixed
time, we need to consider more check-ins at a similar hour.

This study will provide the usual interests of the user and the habits (s)he has
and, as a consequence, we can offer him/her recommendations of places related
to the user’s interest and the current location (s)he has, such as, restaurants,
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theaters, sport centers, etc., near to the location in which (s)he is doing a new
check-in.

4 Computing a fuzzy formal context from the LBSM
dataset

In this section, we will show the considered procedure in order to obtain a fuzzy
formal context and define a methodology for recommendation based on FCA.
Note that we will study the interests and habits of only one user.

The procedure consists of three basic steps:

– Compute a partition of the check-ins by similar POI for the target user,
comparing the time and topic of the check-ins.

– For each hour h and characteristic r (included in the topics), we compute a
truth value of the sentence: “the user u at hour h is in a place with char-
acteristic r”. In this case, we need to take into account that each topic can
have more than one characteristic. This is important since, as we previously
commented, the topic might not exactly describe the really interest of the
target user at that time. In order to cover this problem we have differentiate
two cases: (1) if only one characteristic r has the topic at hour h, the POI is
clear and so, this check-in is considered with truth value 1; (2) if the topic has
different characteristics r1, . . . , rn, at hour h, we consider as truth value for
each characteristic 0.8. We have assuming this value due to a smaller value
penalize so much this check-in. Finally, for each hour h and characteristic r
we sum all the truth values obtained for each check-in.

– Normalize the obtained matrix in order to obtain a [0, 1]-fuzzy relation. Note
that the matrix that we have obtained from the second step may not be a
[0, 1]-fuzzy relation, which is needed in order to be considered as a relation
in the fuzzy FCA framework. Hence, we need to normalize the values of the
matrix. Since, we would like to provide recommendations we need to carry
out a global normalization, considering the maximum element in the whole
matrix.

Hence, after applying the proposed procedure to the LBSN database, we
obtain a [0, 1]-fuzzy relation R between hours and characteristics which can be
associated with a formal context in which the objects are the hours, the attributes
are the characteristics and the relation is R. From this context the fuzzy FCA
theory can be applied.

5 Applying FCA for analyzing the database

In this section, we will apply this procedure to a user which has 456 check-ins in
the considered LBSN database, from 26.04.2010 to 12.08.2011. It is natural to
assume that the user was not online always. As we previously commented, the
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set of objects will be formed by the hours and the attributes will be the different
characteristics:

A = {Stadium, Arts & Entertainment, Professional & Other Places, Outdoors

Recreation, Beach, Music Venue, Food, Travel & Transport, Hotel, Spanish

Restaurant, Medical Center, Movie, Theater, Nightlife & Spot, Shop Service,

Residence, Office, Gym Fitness and etc}
B = {00, 01, . . . , 23}

The next step is to compute the relation R between the objects and attributes.
First of all, we apply the first step, and we obtain 207 partitions of the check-
ins. Each partition represents the different topics at one hour h with topic p. For
example, the partition associated with the topic: “Professional & Other Places”
at 15:00h (until 16:00h) has 9 check-ins, which correspond to the numbers 24,
31, 32, 54, 124, 125, 128, 157 and 435, of the list of 456 check-ins of the target
user. The second step computes the intermediate matrix. Table 2 represents one
example of the obtained intermediate matrix, in which we only consider four
hours and five characteristics.

Table 2. Example of the intermediate matrix

Stadium Arts & Entertainment Professional & O.P. Food Nightlife Spot

13 0 0 0 0 0

14 0 0.8 0.8 0 0

15 0 0 0.8 0 0.8

16 0 0 6.8 0 0.8

17 0 0.8 11.4 0.8 0.8

18 0 1 10.4 0 0.8

Note that this matrix is not a [0, 1]-fuzzy relation, which is needed in order to
be considered in a formal context. Hence, we need to normalize the values of the
matrix, this normalization will be global dividing the elements in the matrix by
the greatest one, obtaining the relation R. For example, from Table 2 we obtain
the values in Table 3. Note that this table only shows a subrelation of R with 4
hours of the 24 hours and 5 characteristics of the total of 33.

After defining the fuzzy formal context (A,B,R), we can use the concept-
forming operators in order to compute the concepts, where the frame will be
given by the unit interval and the Gödel pair. Specifically, for the recommen-
dation process we will compute the concepts which represent some particular
period, such as the morning, afternoon and evening, which can be associated
with the following fuzzy subset of the object set: gm : B → [0, 1], ga : B → [0, 1]
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Table 3. Normalization of Table 2

Stadium Arts & Entertainment Professional & O.P. Food Nightlife Spot

13 0 0 0 0 0

14 0 0.0412 0.0412 0 0

15 0 0 0.0412 0 0.0412

16 0 0 0.3505 0 0.0412

17 0 0.0412 0.5876 0.0412 0.0412

18 0 0.0515 0.5361 0 0.0412

and ge : B → [0, 1], respectively, which are defined as follows:

gm(b) =





0.5 if b = 7

1 if b = 8

0 otherwise

ga(b) =





1 if b = 15

0.5 if b = 16

0 otherwise

ge(b) =





1 if b = 22

0.5 if b = 23

0 otherwise

Therefore, in order to know the lifestyle of the target user in that moments,
we compute the mapping (gm)↑, (ga)↑ and (ge)

↑. The next table shows the
characteristics for each period with the greatest truth values.

Table 4. Characteristic ranking by period

Characteristic (gm)↑ (ga)↑ (ge)↑

Professional & O. P. 0 0.5876 0.2887

Arts & Entertainmant 0 0.0412 0.1753

Outdoors Recreation 0 0 0.134

Nightlife & Spot 0.0412 0.0412 0.0825

Stadium 0 0 0.0412

Food 0.0825 0 0.0412

At the morning the user prefers “Food” places. This is a usual time for
breakfast, which can be at home or maybe in some restaurant or coffee house.
At the afternoon, between 3-4 p.m., the category “Professional & O.P.” has the
greatest truth value and the second one has a very small value. Therefore, we can
suppose that the user is usually working at the afternoon. Sometimes he is also
traveling or doing some cultural activities, but these are unusual occupations.

At the evening, we also have the user is working and we can suppose that
this person is working at night or freelance. In this case, the category “Arts &
Entertainment” has a large truth value then we can suppose that the user mades
some creative work or when (s)he is not working (s)he likes attending cultural
performances.

Therefore, using FCA we can describe the user habits and lifestyles and so,
we can recommend the better places for him/her in the moment in which (s)he
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is using the application. For example, at the evening the app will recommend
the best cultural performances in nearby places.

6 Conclusions and future work

In this work, we have presented a procedure to obtain formal contexts from
LBSN databases. By means of this procedure, the theory of fuzzy FCA can be
applied to extract information of the considered database. This information let
us study the interests and habits of one user and make recommendations related
to his interest. In the future we will apply more methodologies and properties
in order to extract more information from the LBSN.
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Abstract. A new notion of a lattice valued Boolean algebra is intro-
duced. It is based on an algebra with two binary, a unary and two nullary
operations, which is not a crisp Boolean algebra in general. We replace
the classical equality by a lattice valued equivalence so that the Boolean
algebra identities are correspondingly satisfied. Main properties of the
new introduced notion are proved, and a connection with the notion of a
generalized lattice valued lattice is provided. As an application, the paper
contains basic structures for developing generalized Boolean functions.

1 Introduction and preliminaries

Boolean algebras and functions are main algebraic tools on which the information
and communication technologies are based. For lattice valued (fuzzy) structures
let us mention fuzzy groups, fuzzy lattices ([1, 14]), fuzzy Boolean algebras [5,
13, 12] and generally fuzzy algebras ([7, 3]). A fuzzy equality is introduced by
Höhle ([9]), and then used in ([2, 3, 6]). Lattice valued identities were defined
and investigated in ([10]). The aim of this paper is to develop algebras which
are less strict than a Boolean algebra, in order to investigate functions over
such generalized structures. Then we would be able to apply these algebras and
functions to a wider class of problems arising in the fields of communication and
CT. In the present paper we introduce Ω-valued Boolean algebras, where Ω is a
complete lattice of membership values, and E is a lattice-valued equality which
replaces the classical one. Our approach and the notion of the Ω-valued Boolean
algebra by the definitions and properties differs from other known generalizations
of Boolean algebra in the fuzzy setting.

A Boolean algebra is an algebra (B,u,t,′ , O, I) with two binary, one unary
and two nullary operations, satisfying: both binary operations are commutative,
distributive in both directions, unary operation ′ has the properties of the com-
plement, O is a neutral element for the operation t, I is a neutral element for the
operation u. A Boolean algebra is a Boolean lattice, which means that (B,u,t)
is a lattice fulfilling distributive laws of binary operations, that O and I are the
bottom and the top element respectively, and a′ is the unique complement of a,

? Research supported by Ministry of Education, Science and Technological Develop-
ment, Republic of Serbia, Grant No. 174013.



for every a ∈ B. Moreover, an ordering relation 6 can be defined in the Boolean
algebra: x 6 y iff x u y = x.

The membership values structure here is a complete lattice; it is a structure
(Ω,∧,∨,6) with ordering relation 6 , having the infimum and the supremum
for every subset. Infimum and supremum of an arbitrary family {pi | i ∈ I} of
elements from Ω are denoted by

∧
i∈I pi and

∨
i∈I pi, respectively. A complete

lattice has the greatest element, 1, and the smallest element, 0.

A lattice valued set µ on a nonempty set A (or a fuzzy set on A) is a
function µ : A→ Ω, where Ω is a complete lattice. A cut set of a lattice valued
set µ : A→ Ω is a subset µp of A defined by µp = {x ∈ X | µ(x) > p}.

Importance of so called ”cutworthy” approach (the approach of dealing with
cuts) is highlighted in [?].

A lattice valued relation R on A is a mapping R : A2 → Ω. Let µ : A→ Ω
be an Ω-valued set on A and let R : A2 → Ω be an Ω-valued relation on A.
If for all x, y ∈ A, R satisfies R(x, y) 6 µ(x) ∧ µ(y), then we say that R is an
Ω-valued relation on µ.

R is reflexive on µ if R(x, x) = µ(x) for every x ∈ A. (1)

R is symmetric if R(x, y) = R(y, x) for all x, y ∈ A; (2)

R is transitive if R(x, z) ∧R(z, y) 6 R(x, y) for all x, y, z ∈ A. (3)

A reflexive, symmetric and transitive relation R on µ is a lattice valued
equivalence on µ.

If E is a lattice valued equivalence on a lattice valued set µ, µ(x) = E(x, x),
we say that (A,E) is an Ω-set.

Clearly, for p ∈ Ω, the cut Ep of E is an equivalence relations on µp.

Let E be an Ω-valued equivalence on µ. An Ω-valued relation R : A2 → Ω
on A is E-antisymmetric, if the following holds:

R(x, y) ∧R(y, x) = E(x, y), for all x, y ∈ A. (4)

Let (A,E) be an Ω-set. We say that an Ω-valued relation R : A2 → Ω on A is
an Ω-valued order on (A,E), if R is reflexive on µ (µ(x) = E(x, x) = R(x, x)),
E-antisymmetric, and transitive.

We start from an algebra A = (A,F ), where A is a nonempty set, and F is
a set of operations on A. A lattice valued subalgebra of A is any mapping
µ : A→ Ω, and which fulfils the following: For any operation f from F with an
arity n > 0, f : An → A, and for all a1, . . . , an ∈ A, the following is satisfied

n∧

i=1

µ(ai) 6 µ(f(a1, . . . , an)), (5)

and for a nullary operation (constant) c ∈ F , µ(c) = 1.

We shall need the following notions.



Let A = (A,F ) be an algebra. A fuzzy relation R : A2 → Ω is compatible
with the operations in F if the following holds: for every n-ary operation f ∈ F
and for all a1, . . . , an, b1, . . . , bn ∈ A

n∧

i=1

R(ai, bi) 6 R(f(a1, . . . , an), f(b1, . . . , bn)), and (6)

R(c, c) = 1 for every constant (nullary operation) c ∈ F. (7)

If R is an Ω-valued relation on an Ω-valued subalgebra µ of A, then it is
compatible (or compatible on µ), if it is compatible with the operations in F ,
in the sense of (6) and (7).

A separated Ω-valued equivalence on an Ω-valued subalgebra µ is a compat-
ible Ω-valued equivalence on µ, fulfilling (see e.g., [10]): for all x, y ∈ A, x 6= y,
if R(x, x) 6= 0, then R(x, y) < R(x, x). A separated Ω-valued equivalence is in
fuzzy framework frequently called an Ω-valued equality, since the classical
equality which is replaced by an Ω-valued equivalence, is also separated.

Let u(x1, . . . , xn) ≈ v(x1, . . . , xn) be an identity in the language of an algebra
A, . Let also µ be an Ω-valued subalgebra of A, and E an Ω-valued equivalence
on A. We say that the above identity holds (is valid) on µ with respect to
E if the following condition is fulfilled for all a1, . . . , an ∈ A:

n∧

i=1

µ(ai) 6 E(u(a1, . . . , an), v(a1, . . . , an)). (8)

If an Ω-valued subalgebra µ of an algebra A fulfils an identity u ≈ v, then
this identity need not hold on A. However, the converse holds, i.e., an identity
fulfilled by the basic algebra is also satisfied by the corresponding Ω-valued
subalgebra µ with respect to E.

In papers [11, 8] a new concept of fuzzy lattices has been developed as an Ω-
structure. The basic structure is an algebra with two binary operations (M,u,t),
and an Ω-valued equivalence E : M2 → Ω, compatible with operations u and
t. Then M = (M,E) is an Ω-valued lattice if the known lattice identities
hold. By (8), this means that the following formulas are satisfied (recall that
µ : M → Ω is defined by: µ(x) = E(x, x)):

µ(x) ∧ µ(y) 6 E(x u y, y u x)
µ(x) ∧ µ(y) 6 E(x t y, y t x)
µ(x) ∧ µ(y) ∧ µ(z) 6 E((x u y) u z, x u (y u z))
µ(x) ∧ µ(y) ∧ µ(z) 6 E((x t y) t z, x t (y t z))
µ(x) ∧ µ(y) 6 E((x u y) t x, x)
µ(x) ∧ µ(y) 6 E((x t y) u x, x).

2 Ω-valued Boolean Algebra: Definition and Results

Let B = (B,u,t,′ , O, I) be an algebraic structure with two binary, one unary
and two nullary operations (constants) and let Ω be a complete lattice with the



top and the bottom element 1 and 0 respectively. Let (B,E) be an Ω-set, where
E is compatible with all the operations of this B. Recall that µ : B → Ω is
defined by µ(x) = E(x, x). The ordered pair (B, E) is an Ω-valued Boolean
algebra if the classical axioms for Boolean algebras are fulfilled. This means:

1. µ(x) ∧ µ(y) ≤ E(x u y, y u x)
2. µ(x) ∧ µ(y) ≤ E(x t y, y t x)
3. µ(x) ∧ µ(y) ∧ µ(z) ≤ E(x u (y t z), (x u y) t (x u z))
4. µ(x) ∧ µ(y) ∧ µ(z) ≤ E(x t (y u z), (x t y) u (x t z))
5. µ(x) ≤ E(x tO, x)
6. µ(x) ≤ E(x u I, x)
7. µ(x) ≤ E(x u x′, O)
8. µ(x) ≤ E(x t x′, I)
9. E(O, I) < 1.

Straightforwardly, µ(x) = E(x t O, x) and similarly µ(x) = E(x u I, x). In
case E is separated, we obtain x t O = x and x u I = x meaning that in this
case B should have neutral elements for t and u.

Since the formulas corresponding to axioms are dual in the sense that they
appear in the dual pairs w.r.t. u and t, also O and I, the principle of duality
is satisfied. This means that for every statement which is true in the language of
algebra (B,u,t,′ , O, I), the dual statement is also true. The dual statement is
obtained exchanging each occurrence of u with t and vice versa and exchanging
each occurrence of O with I and vice versa.

Proposition 1. Let B = (B,u,t,′ , O, I) be a Boolean algebra, Ω a complete
lattice and let µ : B → Ω be an Ω-Boolean algebra. If E is an arbitrary Ω-valued
equivalence on µ, then, (B, E) is an Ω-Boolean algebra.

Proposition 2. Let B = (B,u,t,′ , O, I) be an algebraic structure, Ω a com-
plete lattice, µ : B → Ω a lattice valued algebra on B, E an Ω-valued equivalence
on µ and (B, E) an Ω-Boolean algebra. Then, the following identities hold on
(B, E):

x uO ≈ O and x t I ≈ I;
x u (x t y) ≈ x and x t (x u y) ≈ x;
x u x ≈ x and x t x ≈ x;
µ(x) = E(x u x, x); and µ(x) = E(x t x, x);
in case when E is a separated x u x = x; and x t x = x;
x u (y u z) ≈ (x u y) u z; and x u (y u z) ≈ (x u y) u z.

Ω-valued Boolean algebra is also an Ω-valued lattice, as follows.

Theorem 1. Let (B,u,t,′ , O, I) be an algebraic structure as above, Ω a com-
plete lattice, µ : B → Ω a lattice valued algebra on B, E an Ω-valued equiva-
lence compatible with the operations on (B,u,t,′ , O, I) and (B,E) an Ω-valued
Boolean algebra. Then (M,E) is an Ω-valued lattice, where M = (B,u,t) is a
bi-groupoid which is a reduct of the starting structure.



If (B,u,t,′ , O, I) is an algebraic structure and µ : B → Ω a lattice valued
algebra on µ, then for every p ∈ Ω, µp are subalgebras of (B,u,t,′ , O, I).
Moreover, if E : B2 → Ω is an Ω-valued equivalence on µ, then all the cut
relations Ep, are congruences on µp for p ∈ Ω.

Theorem 2. Let B = (B,u,t,′ , O, I) be an algebraic structure with two binary
operation, one unary and two constants, and Ω a complete lattice. Let also
µ : B → Ω be a lattice valued algebra on B, E an Ω-valued equivalence on µ.
Then, (B, E) is an Ω-Boolean algebra if and only if for every p ∈ Ω, the quotient
structure µp/Ep is a (classical) Boolean algebra.

Let (B, E) be an Ω-valued Boolean algebra with (B,u,t,′ , O, I) being an
algebraic structure as above, and µ(x) = E(x, x). Then we define R : B2 → Ω
by R(x, y) := µ(x) ∧ µ(y) ∧ E(x u y, x).

Proposition 3. Let (B, E) be an Ω-Boolean algebra, with (B,u,t,′ , O, I) be-
ing an algebraic structure with two binary, one unary and two nullary opera-
tions and E a separated Ω-valued equivalence on B. Then an Ω-valued relation
R : B2 → Ω, defined by R(x, y) := µ(x)∧µ(y)∧E(xuy, x) is an Ω-valued order
on (B, E).

Our main interest in Ω-Boolean algebras are those in which the basic struc-
ture is a collection of n-tuples over the two-element set {0, 1}. In other words,
we are mostly concentrated to Ω-Boolean algebras (B, E), where

B = (B,u,t, ,̄ O, I), B ⊆ {0, 1}n, (9)

while the operations u, t, and ¯ are arbitrary (two binary and a unary one,
respectively), O = (0, 0, . . . , 0), I = (1, 1, . . . , 1). As usual, we denote by µ the
function µ : B → Ω, such that for every n-tuple x ∈ B, we have µ(x) = E(x, x).

These finite sequences of zeros and ones are codewords in the digital tech-
nology and the above structure is usually complete (consisting of the whole set
{0, 1}n), moreover it is a classical Boolean algebra. However, in reality noise
and errors have an impact to the operations, and the Boolean structure may be
corrupted to some extent; in addition, some tuples might be missing. The above
Ω-Boolean algebra with suitable operations and with a fuzzy equality could be
a model of such a modified structure.

Let us denote the classical Boolean algebra of all n-tuples of 0 and 1 as
follows: Bn2 = ({0, 1}n,min,max, ′, 0, 1), where, as usual, operations are defined
componentwise: for (a1, . . . , an), (b1, . . . , bn) ∈ {0, 1}n,

min((a1, . . . , an), (b1, . . . , bn)) = (min(a1, b1), . . . ,min(an, bn));

max((a1, . . . , an), (b1, . . . , bn)) = (max(a1, b1), . . . ,max(an, bn));

(a1, . . . , an)′ = (a
′
1, . . . , a

′
n).

We say that an Ω-Boolean algebra is standard if it is of the form (Bn2 , H),
H : ({0, 1}n)2 → Ω being an Ω-valued equivalence.



In the sequel, we deal with Ω-Boolean algebras of the type (9), namely those
in which B ⊆ {0, 1}n, for some natural number n. Let us call such an Ω-Boolean
algebra ((B,u,t, ,̄ O, I), E), B ⊆ {0, 1}n regular, if there is a standard Ω-
Boolean algebra (Bn2 , H), such that the following hold:

(i) The Ω-valued equivalence E : B → Ω is a restriction of the Ω-valued equiv-
alence H, i.e., E = H|B .

(ii) For all n-tuples x, y ∈ B,
(a) E(x, x) 6 E(x′, x);
(b) E(x, x) ∧ E(y, y) 6 E(x u y,min(x, y));
(c) E(x, x) ∧ E(y, y) 6 E(x t y,max(x, y)).

Theorem 3. For a regular Ω-Boolean algebra the following holds:
(i) For every p ∈ Ω, Ep ⊆ Θ, where Ep = E−1(↑p) is the p-cut of the

Ω-valued equivalence E, and Θ is a congruence on a Boolean subalgebra M of
{0, 1}n.

(ii) For every p ∈ Ω, the map [a]Ep 7→ [a]Θ is an isomorphism of the quotient
Boolean algebra µp/Ep onto the Boolean algebraM/Θ, with notation as in (i).

3 Conclusion

In this paper we introduce an Ω-valued Boolean algebra. The domain structure
need not be a Boolean algebra. Still, there is a connection: particular quotients
of cuts of the lattice valued domain over the cuts of the corresponding lattice
valued equality are Boolean algebras. Our intention is to use Ω-valued Boolean
functions for investigations in generalizing switching and logical circuits and
their applications.
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Sets and Systems 289 (2016) 94—112.
5. J. Coulon, J.-L. Coulon, Fuzzy Boolean Algebras, J. Math. Anal. Appl. 99(1984)

248–256.
6. M. Demirci, A theory of vague lattices based on many-valued equivalence relations

I: general representation results. Fuzzy Sets and Systems 151 (2005) 437–472.
7. A. Di Nola, G. Gerla, Lattice valued algebras, Stochastica 11 (1987) 137-150.
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Abstract. This paper will study the bipolar fuzzy relation equation
based on the max-product composition and the adjoint negation opera-
tor obtained from the product residuated implication. Interesting prop-
erties and different examples of this bipolar max-product fuzzy relation
equation will be introduced.

1 Introduction

Fuzzy relation equations (FREs), introduced by Sanchez [17, 18], have been
widely studied [1, 5–8, 10, 13–16] due to their application in approximate rea-
soning, decision making and fuzzy control, etc. Considering these fuzzy relation
equations containing unknown variables together with their logical negations si-
multaneously give rise to a new kind of equations called bipolar fuzzy relation
equations. These bipolar equations have already been used in applications asso-
ciated with optimization problems, where the variables need to show a bipolar
character [9, 11, 19].

There are few papers dealing with bipolar fuzzy relation equations and they
are devoted to the study of bipolar max-min fuzzy relation equations. In [12],
we can found an elaborated analysis on the solvability of bipolar max-min fuzzy
relation equations. Following this research line, we have already provided defini-
tions, illustrative examples and interesting properties related to the solvability
of bipolar max-product fuzzy relation equations with the standard negation [2].
In this paper, we consider these equations with another negation, the residu-
ated negation associated with the product t-norm, which is not involutive and
provides different solvability properties as we will show in this paper. These
studies will be fundamental in the development of future advances towards the
consideration of arbitrary negations.

2 Solving bipolar FREs based on the product t-norm

The basic operators involved in the studied bipolar FREs will be the product
adjoint pair (&P ,←P ) defined as x&P y = x ∗ y, z ←P x = min(1, z/x), for
all x, y, z ∈ [0, 1], and the product adjoint negation nP defined as nP (0) = 1
and nP (x) = 0, for all x ∈ ]0, 1], which will be simply called product negation.
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Note that this negation is also obtained from the residuated negation of others
left-continuous t-norms, such as, the Gödel t-norm [3, 4].

In this paper, first of all, we will introduce the notion of bipolar max-product
FRE with the product negation and a unique unknown variable. Then, we will
analyze simple scenarios and we will provide a characterization on the solvability
of these equations. The next step in our paper will consist in giving sufficient
and necessary conditions which allow us to ensure when bipolar max-product
FREs with different unknown variables are solvable. In addition, different results
related to the existence of the greatest (least, respectively) solution or a finite
number of maximal (minimal, respectively) solutions for these last equations
are presented. Finally, we will deal with the resolution of a simple bipolar max-
product FREs system composed by two equations and one unknown variable.

2.1 A simple scenary

Our study will start with the most simple case of bipolar max-product FRE,
that is, containing a unique unknown variable. Such equation is given as follows:

(a+ ∗ x) ∨ (a− ∗ nP (x)) = b (1)

where a+, a−, b ∈ [0, 1], x is an unknown variable in [0, 1], ∗ is the product
operator, ∨ is the maximum operator and nP is the product adjoint negation.

It is important to note that Equation (1) is simplified when either a+, a− or
b is equal to 0, and as a consequence its solvability can be characterized in an
easier way. In what follows, the previous three different cases will be considered
in order to obtain a first approach on the solvability of Equation (1).

(i) If a+ = 0, then Equation (1) is given by a− ∗ nP (x) = b. According to the
definition of nP , we can deduce that Equation (1) is solvable if b = 0 or
a− = b. When b = 0, the solution of Equation (1) is any x ∈ [0, 1[. If a− = b
then the unique solution of Equation (1) is x = 0.

(ii) If a− = 0, then Equation (1) becomes into a+ ∗ x = b. Taking into account
that the product t-norm is a continuous order-preserving mapping and con-
sidering that the equalities a+ ∗ 0 = 0 and a+ ∗ 1 = a+ hold, we can ensure
that Equation (1) is solvable if and only if a+ ≥ b.

(iii) If b = 0, then Equation (1) is given by (a+ ∗ x)∨ (a− ∗nP (x)) = 0. This last
equation is solvable if and only if a+ ∗ x = 0 and a− ∗ nP (x) = 0. From the
definition of the negation nP , we can conclude that Equation (1) is solvable
if and only if a+ = 0 or a− = 0. Note that these cases have already been
studied above.

From now on, we will consider that each known variable appearing in bipolar
max-product t-norm FREs is different from zero. The following result charac-
terizes the solvability of bipolar max-product FREs defined with the adjoint
negation associated with the product t-norm.

Theorem 1. Let a+, a−, b ∈ (0, 1] and x an unknown variable belonging to [0, 1].
The bipolar max-product t-norm FRE given by Equation (1) is solvable if and
only if a− = b or a+ ≥ b.
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Notice that, Equation (1) has at most two solutions when it is solvable. These
solutions are x = 0 and x = b ←P a+, being ←P the residuated implication
related to the product t-norm. When both x = 0 and x = b←P a

+ are solutions,
then x = b ←P a+ is the greatest one. We will illustrate the above theorem by
means of the following example.

Example 1. Given the bipolar max-product t-norm FRE defined as

(0.5 ∗ x) ∨ (0.2 ∗ nP (x)) = 0.3 (2)

Equation (2) is solvable since the hypothesis required in Theorem 1 are satisfied.
Specifically, we have that 0.2 6= 0.3 and 0.5 ≥ 0.3, from which we can ensure
that x = 0.3←P 0.5 = 0.6 is the unique solution of Equation (2):

(0.5 ∗ 0.6) ∨ (0.2 ∗ nP (0.6)) = (0.5 ∗ 0.6) ∨ (0.2 ∗ 0) = 0.3 ∨ 0 = 0.3

It is easy to proved that x = 0 is not a solution of Equation (2). If we replace the
variables we have: (0.5 ∗ 0) ∨ (0.2 ∗ nP (0)) = (0.5 ∗ 0) ∨ (0.2 ∗ 1) = 0 ∨ 0.2 = 0.2,
which is different from 0.3 ut

Now, we are interested in studying more complex bipolar max-product fuzzy
relation equations. We will continue our research with a bipolar max-product
fuzzy relation equation containing different unknown variables.

2.2 A bipolar max-product FRE with different unknown variables

In this section, we will provide sufficient and necessary conditions to guarantee
the solvability of bipolar max-product FREs with the product negation, in which
appear a finite number of different unknown variables. Moreover, we will show
when these equations has either greatest (least, respectively) solution or a finite
number of maximal (minimal, respectively) solutions. To begin with, we will
show under what conditions a bipolar max-product FRE containing different
unknown variables is solvable.

Theorem 2. Let a+i , a
−
i , b ∈ (0, 1] and xi an unknown variable belonging to

[0, 1], for all i ∈ {1, . . . ,m}. The bipolar max-product fuzzy relation equation

m∨

i=1

(a+i ∗ xi) ∨ (a−i ∗ nP (xi)) = b (3)

is solvable if and only if max{a+i | i ∈ {1, . . . ,m}}≥ b or there exists an index
k ∈ {1, . . . ,m} such that a−k = b.

Example 2. Consider the bipolar max-product FRE with three unknown vari-
ables x1, x2, x3 ∈ [0, 1] given by Equation (4):

(0.4∗x1)∨(0.7∗nP (x1))∨(0.2∗x2)∨(0.1∗nP (x2))∨(0.5∗x3)∨(0.2∗nP (x3)) = 0.3 (4)
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Since max{0.4, 0.2, 0.5} = 0.5 ≥ 0.3, we can apply Theorem 2 what allows us
to ensure that Equation (4) is solvable. For instance, the tuple (0.5, 0, 0.6) is a
solution of such equation. Replacing the variables in the equation we have:

(0.4 ∗ 0.5) ∨ (0.7 ∗ nP (0.5)) ∨ (0.2 ∗ 0) ∨ (0.1 ∗ nP (0)) ∨ (0.5 ∗ 0.6) ∨ (0.2 ∗ nP (0.6))

which is equal to 0.2 ∨ 0 ∨ 0 ∨ 0.1 ∨ 0.3 ∨ 0 = 0.3. ut

Although we have provided only one solution for Equation (4) in the example
above, we can make simple computations in order to obtain all its possible solu-
tions. Moreover, one can wonder if there exists the greatest solution or several
maximal solutions for Equation (4). An analogous question arises with respect to
the existence of its least solution or different minimal solutions. In order to clar-
ify these issues for a general bipolar max-product FRE with different variables,
we introduce two interesting results. These results use the notion of cardinality
of one set A, which will be denoted as card(A).

Theorem 3. Given a+i , a
−
i , b ∈ (0, 1] and xi an unknown variable in [0, 1], for

all i ∈ {1, . . . ,m}. Consider a solvable bipolar max-product FRE

m∨

i=1

(a+i ∗ xi) ∨ (a−i ∗ nP (xi)) = b (5)

Then, the following statements hold:

(1) If max{a+i | i ∈ {1, . . . ,m}} ≥ b, the set of solutions of Equation (5) has a
greatest element.

(2) If a+i < b for all i ∈ {1, . . . ,m}, then the set of maximal solutions of Equa-
tion (5) is finite. Moreover, the number of maximal solutions is equal to:

card({k ∈ {1, . . . ,m} | a−k = b})

A similar result is obtained with respect to the least solution and the set of
minimal solutions of a solvable bipolar max-product FRE with different vari-
ables. Nevertheless, this result shows that the set of minimal solutions of such
equation can be empty.

Theorem 4. Given a+i , a
−
i , b ∈ (0, 1] and xi an unknown variable belonging to

[0, 1], for all i ∈ {1, . . . ,m}. Consider a solvable bipolar max-product FRE

m∨

i=1

(a+i ∗ xi) ∨ (a−i ∗ nP (xi)) = b (6)

Then, the following statements hold:

(1) If there exists k ∈ {1, . . . ,m} such that a−k = b and a−i ≤ b, for all i ∈
{1, . . . ,m}, then the set of solutions of Equation (6) has a least element.

(2) If there exist k1, k2 ∈ {1, . . . ,m} such that a−k1 = b and a−k2 > b, then the set
of solutions of Equation (6) has no minimal elements.
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(3) If a−i 6= b for all i ∈ {1, . . . ,m}, then the set of minimal solutions of Equa-
tion (6) is finite. Moreover, the number of minimal solutions is:

card({k ∈ {1, . . . ,m} | a+k ≥ b and a−i ≤ b for all i 6= k})
In order to illustrate Theorems 3 and 4, we will carry on with the study of

the bipolar max-product FRE given in Example 2.

Example 3. Coming back to Example 2, we have obtained that Equation (4)
is solvable and therefore, we can apply Theorems 3 and 4. Equation (4) has
a greatest solution because statement (1) in Theorem 3 is verified, that is
max{0.4, 0.2, 0.5} ≥ 0.3. The greatest solution is the tuple (0.75, 1, 0.6).

In addition, it is easy to see that the conditions required in statements (3) in
Theorem 4 are satisfied. According to statement (3), we obtain that the number
of minimal solutions of Equation (4) is:

card({k ∈ {1, 2, 3} | a+k ≥ b and a−i ≤ b for all i 6= k}) = card{1} = 1

As a consequence, we can deduce that Equation (4) has only one minimal solution
which is (0.75, 0, 0). It is important to mention that (0, 0, 0.6) is not a solution
of Equation (4), as you can check below:

(0.4 ∗ 0) ∨ (0.7 ∗ 1) ∨ (0.2 ∗ 0) ∨ (0.1 ∗ 1) ∨ (0.5 ∗ 0.6) ∨ (0.2 ∗ 0) = 0.7

On the other hand, if we modify Equation (4) obtaining the following one:

(0.4∗x1)∨(0.7∗nP (x1))∨(0.2∗x2)∨(0.1∗nP (x2))∨(0.5∗x3)∨(0.9∗nP (x3)) = 0.3 (7)

We can apply Theorems 2 and 4 in order to assert that Equation (7) is solvable
but it has no minimal solutions. Specifically, applying Theorem 4, we have that
the number of minimal solutions in Equation (7) is:

card({k ∈ {1, 2, 3} | a+k ≥ b and a−i ≤ b for all i 6= k}) = card{∅} = 0 ut

After presenting the characterization about the solvability of bipolar max-
product FREs with the product negation and the conditions to guarantee the
existence of their maximal and/or minimal solutions, we will focus on our next
goal. We are interested in solving bipolar max-product FREs systems.

3 Conclusions and future work

This paper has been focused on the resolution of bipolar max-product FREs
with the product negation. Although the obtained results have continued in the
research line proposed in [2], the conditions required to guarantee the solvability
of bipolar max-product FREs with different variables are different. Clearly, these
differences are due to the use of the product negation (non-involutive negation)
instead of the standard negation (involutive negation). Hence, we have shown the
interest in the study of this bipolar FREs with the particular case of the product
negation. Therefore, we will study in the future the solvability of systems of this
kind of bipolar FREs with one or more unknown variables.
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Abstract. The purpose of this paper is to compare two methods for com-
puting the greatest solutions of two-mode systems of FREIs. The first one is
the direct method developed recently in [26], and the second one consists in
converting the two-mode case into the one-mode case, and computing the
greatest solutions of related one-mode systems of FREIs, using algorithms
provided in [13, 15]. The conversion is made by means of the well-known
method used in social network analysis for transforming two-mode net-
works into one-mode networks. We prove theoretically interesting result
according to which solutions of any two-mode system of FREIs can be de-
rived from solutions of the related one-mode system, and vice versa. How-
ever, from the computational point of view, the conversion based method
is more memory and time demanding, what favors the direct method.

1 Introduction and preliminaries

The study of systems of fuzzy relation equations and inequalities (FREIs) was
initiated by E. Sanchez, who used them in medical research (cf. [21–23]). Later
they found a much wider field of application, and nowadays they are used in
fuzzy control, discrete dynamic systems, knowledge engineering, identification
of fuzzy systems, prediction of fuzzy systems, decision-making, fuzzy informa-
tion retrieval, fuzzy pattern recognition, image compression and reconstruction,
fuzzy automata theory, fuzzy social network analysis and in many other areas.

Sanchez started the study of the linear systems. Solvability and methods for
computing the greatest solutions to linear systems of FREIs over various struc-
tures of truth values have been investigated in numerous papers. More complex
systems of FREIs, called weakly linear, have been recently studied in [13, 15, 16],
where the existence of the greatest solutions of these systems has been proved
and algorithms for their computing have been provided. Initially, the reason for
their study were very important applications in the theory of fuzzy automata,
in the state reduction and the study of simulation, bisimulation and equivalence
(cf. [6–8, 25]). However, significant applications have also been found in other
areas, such as social network analysis, where the solutions of certain weakly
linear systems, known as regular equivalences, play a key role in identifying
positions of actors in the network.
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The problems of social network analysis, namely the problems of positional
analysis, have also initiated a study of two-mode system of FREIs, which has been
conducted in [26]. In that paper, the existence of the greatest solutions of two-
mode systems of FREIs has been proved and algorithms for their computing
have been developed. These algorithms simultaneously compute pairs of fuzzy
relations which are solutions of the considered two-mode systems.

The main problem which will be considered in this paper also originates from
social network analysis. Social network analysis mostly dealt with the one-mode
networks, and a wide variety of methods has been developed for handling one-
mode networks. However, two-mode and multi-mode networks are also com-
mon. Typical examples of two-mode networks include actor-by-event attend-
ance, actor by group membership, actor by trait possession, actor by object pos-
session, and many others. To take advantage of the wealth of methods developed
for one-mode networks in the two-mode case, a frequent approach used in work
with two-mode networks was their conversion to the one-mode case. Common
conversion methods were the method of projections and the method called here
the method of unification, which comprises treating a two-mode network as a
one-mode network over the union of the modes.

The aim of the paper is to study relationships between solutions of two-mode
systems of FREIs and solutions of related one-mode systems of FREIs, obtained
by the conversion of the two-mode case into the one-mode case by means of the
method of unification. We prove that solutions of any two-mode system of FREIs
can be derived from solutions of the related one-mode system, and vice versa.
This is interesting from the theoretical point of view, but from the computational
point of view, the conversion based method leads to an increase in the size of ma-
trices (representing fuzzy relations), so it is more memory and time demanding,
what favors the direct method for solving two-mode systems of FREIs.

For fuzzy relations considered in this paper the structure of membership
values will be a complete residuated lattice L = (L,∧,∨,⊗,→, 0, 1) (for a de-
tailed definition see [13, 15, 26]). A fuzzy relation between non-empty sets A and
B is any fuzzy subset of A × B, i.e., any function R : A × B→ L. If A = B, we say
that R is a fuzzy relation on A. The sets of all fuzzy relations between A and B
and on A are denoted by LA×B and LA×A.

A fuzzy relation 0A×B ∈ LA×B defined by 0A×B(a, b) = 0, for each (a, b) ∈ A×B,
is called the empty relation between A and B. For 0A×A we say that it is the empty
relation on A.

For R ∈ LA×B, its inverse relation R−1 ∈ LB×A is defined by R−1(b, a) = R(a, b),
for all (a, b) ∈ A×B, and for R ∈ LA×B and S ∈ LB×C, their composition R◦S ∈ LA×C

is defined by

R ◦ S(a, c) =
∨

b∈B

R(a, b) ⊗ R(b, c), for all (a, c) ∈ A × C.

Whenever it is defined, the composition is associative, and (R◦S)−1 = S−1 ◦R−1.
For R, S ∈ LA×B, we write R 6 S if R(a, b) 6 S(a, b), for every (a, b) ∈ A × B.
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Let R ∈ LA×B, S ∈ LB×C and T ∈ LA×C, and let fuzzy relations R\T ∈ LB×C and
T/S ∈ LA×B be defined by

R\T(b, c) =
∧

a∈A

R(a, b)→ T(a, c), T/S(a, b) =
∧

c∈C

S(b, c)→ T(a, c),

for all (b, c) ∈ B × C and (a, b) ∈ A × B. Then R\T is called the right residual of T
by R, and T/S is called the left residual of T by S. It should be noted that R\T is
the greatest solution to R ◦U 6 T, and T/S is the greatest solution to V ◦ S 6 T,
where U and V are unknowns which take values in LB×C and LA×B, respectively.
Consequently, R ◦ S 6 T ⇔ S 6 R\T ⇔ R 6 T/S.

For R ∈ LA×A, if R(a, a) = 1, for each a ∈ A, then we say that R is reflexive, if
R(a, b) = R(b, a), for all a, b ∈ A, then R is symmetric, and if R(a, b)⊗R(b, c) 6 R(a, c),
for all a, b, c ∈ A, then it is transitive. A reflexive and symmetric fuzzy relation is
called a fuzzy quasi-order, and a reflexive, symmetric and transitive fuzzy relation
is called a fuzzy equivalence.

For a fuzzy relation R ∈ LA×B and X ⊆ A×B, by RX we denote the restriction
of R to X. If the sets A and B are represented as A = D∪ E and B = F∪G, where
D ∩ E = F ∩G = ∅, then the expression

R =

[
RD×F RD×G

RE×F RE×G

]
(1)

is called the block representation of R, with blocks RD×F, RD×G, RE×F and RE×G. If,
in addition, C = I ∪ J, where I ∩ J = ∅, and S ∈ LB×C, then we have that

R ◦ S =

[
RD×F RD×G

RE×F RE×G

]
◦
[
SF×I SF×J

SG×I SG×J

]
(2)

=

[
RD×F ◦ SF×I ∨ RD×G ◦ SG×I RD×F ◦ SF×J ∨ RD×G ◦ SG×J

RE×F ◦ SF×I ∨ RE×G ◦ SG×I RE×F ◦ SF×J ∨ RE×G ◦ SG×J

]

Let us consider fuzzy relation equations

(MP3) (R ◦ V)−1 = R ◦ V,

(MP4) (V ◦ R)−1 = V ◦ R;

where V is an unknown taking values in LB×A and R ∈ LA×B is a given fuzzy rela-
tion. Equations (MP3) and (MP4) are two of the four equations which are known
as Moore-Penrose equations. Moore-Penrose equations and related concepts have
been studied in the context of matrices and linear operators, as well as within
abstract algebraic structures such as semigroups and rings. They have very im-
portant applications in many areas, such as linear algebra, functional analysis,
probability, statistics, etc. A fuzzy relation which is the solution of both equa-
tions (MP3) and (MP4) is called a {3, 4}-inverse of R. If R ⊂ LA×B is a family of
fuzzy relations, a fuzzy relation which is a {3, 4}-inverse of every R ∈ R is called
a {3, 4}-inverse of the family R. According to the results from [14] (see also [5]),
for an arbitrary familyR of fuzzy relations there exists the greatest {3, 4}-inverse
of this family. It can be computed using the methodology developed in [5, 14].
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2 Fuzzy relational systems and regular fuzzy equivalences
and quasi-orders

A one-mode fuzzy relational system is a pair O = (A,R), where A is a non-empty
set and R = {Ri}i∈I is a family of fuzzy relations on A, whereas a two-mode fuzzy
relational system is a triple T = (A,B,R), where A and B are non-empty sets, and
R = {Ri}i∈I is a family of fuzzy relations between A and B.

Both types of fuzzy relational systems have numerous interpretations and
a wide range of practical applications, and here we mainly have in mind their
interpretations in the context of social network analysis. A one-mode fuzzy rela-
tional system can be interpreted as a one-mode fuzzy social network, where A
is viewed as a set of actors or individuals, and fuzzy relations from R represent
various relationships between actors. On the other hand, a two-mode fuzzy rela-
tional system can be interpreted as a two-mode fuzzy social network, where A and
B are usually viewed as sets of actors and events, or something similar, and
fuzzy relations from R determine the participation of actors in events. There is
also another interpretation, where A and B are understood as sets of objects and
attributes, and fuzzy relations from R assign attributes to objects. This interpre-
tation leads to the concept of a formal context, which is studied in the framework
of the formal concept analysis.

One of the central problems of social network analysis is the problem of iden-
tifying the position or the role of an actor in the network, and the main tool used
to solve this problem, within the branch of the social network analysis called po-
sitional analysis, are regular equivalences. It should be noted that a kind of quasi-
orders, called here right regular, can be even more successful than regular equiv-
alences, as as shown recently in [4]. For more information on social network ana-
lysis, especially on the positional analysis, we refer to the book [12] and survey
articles [2, 3, 9, 18, 24].

In the context of one-mode fuzzy relational systems, regular fuzzy equiva-
lences can be defined through particular systems of fuzzy relation equations.
Let O = (A,R) be a one-mode fuzzy relational system, where R = {Ri}i∈I. In a
natural way, this fuzzy relational system defines three systems of fuzzy relation
equations and inequalities:

α ◦ Ri = Ri ◦ α, i ∈ I, (3)

α ◦ Ri 6 Ri ◦ α, i ∈ I, (4)

α ◦ Ri > Ri ◦ α, i ∈ I, (5)

where α is an unknown taking values in LA×A. Motivated by terminology from
social network analysis, solutions to (3) are called regular fuzzy relations, solutions
to (4) are called right regular fuzzy relations, and solutions to (5) are left regular
fuzzy relations.

These systems of fuzzy relation equations and inequalities have been studied
in [15] (see also [13]). It has been proved that all three systems have the greatest
solutions, which are fuzzy quasi-orders, and methods for computing these great-
est solutions have been provided.
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To obtain the greatest solutions that are fuzzy equivalences, systems (3)–(5)
have been slightly modified, and the following systems have been considered:

α ◦ Ri = Ri ◦ α, α−1 ◦ Ri = Ri ◦ α−1, i ∈ I, (6)

α ◦ Ri 6 Ri ◦ α, α−1 ◦ Ri 6 Ri ◦ α−1, i ∈ I, (7)

α ◦ Ri > Ri ◦ α, α−1 ◦ Ri > Ri ◦ α−1, i ∈ I, (8)

where α is an unknown taking values in LA×A. Clearly, a fuzzy equivalence is
a solution to (6) if and only if it is a solution to (3), and analogous assertions
are valid for (7) and (4), and (8) and (5). It has been also proved in [15] that
systems (6)–(8) have the greatest solutions, which are fuzzy equivalences, and
methods for computing these greatest solutions have been provided. All the
systems (3)–(8) will be called here one-mode systems of fuzzy relation equations
and inequalities.

Two-mode fuzzy relational systems have been studied in [26], where the fol-
lowing systems of fuzzy relation equations and inequalities, assigned to T =
(A,B,R) with R = {Ri}i∈I, have been considered:

α ◦ Ri = Ri ◦ β, i ∈ I, (9)

α ◦ Ri 6 Ri ◦ β, i ∈ I, (10)

α ◦ Ri > Ri ◦ β, i ∈ I, (11)

whereαandβare unknowns taking values in LA×A and LB×B, respectively. Clearly,
solutions to these systems are pairs of fuzzy relations on A and B and can be or-
dered coordinatewise. As in the one-mode case, solutions to (9) are called pairs
of regular fuzzy relations, solutions to (10) are called pairs of right regular fuzzy
relations, and solutions to (11) are called pairs of left regular fuzzy relations. In [26]
the existence of the greatest solutions to these systems has been proved, and
methods for their computing have been provided. It has been also shown that
the greatest solutions are pairs of fuzzy quasi-orders.

In addition, the following systems have been also considered:

α ◦ Ri = Ri ◦ β, α−1 ◦ Ri = Ri ◦ β−1, i ∈ I, (12)

α ◦ Ri 6 Ri ◦ β, α−1 ◦ Ri 6 Ri ◦ β−1, i ∈ I, (13)

α ◦ Ri > Ri ◦ β, α−1 ◦ Ri > Ri ◦ β−1, i ∈ I, (14)

The greatest solutions to these systems, which always exist, are pairs of fuzzy
equivalences, and they are computed using similar methods (cf. [26]).

Systems (9)–(14) will be called here two-mode systems of fuzzy relation equa-
tions and inequalities.

3 One-mode conversions

As we have mentioned, one-mode and two-mode fuzzy relational systems have
been intensively investigated in the context of social network analysis, as one-
mode and two-mode networks. There are three different approaches to the study
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of two-mode networks. The first approach is a separate analysis of each mode. It
is clear that this approach leads to loss of essential information on the two-mode
network, so it is used only in combination with other approaches, as a first step in
a deeper analysis. The second approach is the conversion of two-mode networks
to one-mode networks, and the third one is the true two-mode approach, which
includes, among other things, our method of simultaneous computation of pairs
of regular fuzzy equivalences and fuzzy quasi-orders. Here we discuss the rela-
tionship between the last two approaches, in the context of fuzzy relational sys-
tems and regular fuzzy equivalences and fuzzy quasi-orders.

The first method of conversion from two-mode to one-mode case which we
meet in the literature is the method of projections. If T = (A,B,R) is a two-mode
fuzzy relational system, with R = {Ri}i∈I, then one-mode networks O′ = (A,R′)
and O′′ = (B,R′′), where

R′ = {Ri ◦ R−1
i }i∈I and R′′ = {R−1

i ◦ Ri}i∈I,

are called projections of T . Projections have been widely used in the analysis of
two-mode networks (c.f., e.g., [3, 10, 17, 27]), but do not give good results in the
positional analysis because there is an example of a pair consisting of the greatest
regular fuzzy equivalences on the projections O′ and O′′ which is not necessary
a pair of regular fuzzy equivalences on the original two-mode network T . Also,
it was proved in [17] that the number of links in the projections can be enor-
mously larger than the number of links in the original network, so the projection
approach can significantly increase memory and computational complexity.

Here, we are interested in a different approach, where a two-mode fuzzy rela-
tional system is treated as a one-mode fuzzy relational system over the union of
modes. We call this approach the method of unification. LetT = (A,B,R) be a two-
mode fuzzy relational system, where R = {Ri}i∈I. We define a one-mode fuzzy
relational system O = (A∪ B,R′) with a family R′ = {R′

i
}i∈I of fuzzy relations on

A ∪ B given by the block representations

R′i =
[
0A×A Ri

R−1
i

0B×B

]
, for each i ∈ I. (15)

Such a way of converting two-mode networks to one-mode networks can be
meet, for instance, in [1, 11, 19, 20].

The following theorem explains relationships between regular fuzzy equiv-
alences on O and pairs of regular fuzzy equivalences on T .

Theorem 1. LetT = (A,B,R) be a two-mode fuzzy relational system, withR = {Ri}i∈I,
let O = (A ∪ B,R′) be the one-mode conversion of T specified by (15), and let µ be a
fuzzy equivalence on A ∪ B with the block representation

µ =

[
µA×A µA×B

µB×A µB×B

]
. (16)

Then µ is the greatest regular fuzzy equivalence on O if and only if the following
statements are true
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(A) (µA×A, µB×B) is the greatest pair of regular fuzzy equivalences on T ;

(B) µB×A is the greatest {3, 4}-inverse of the family R.

Proof. Seeing that µ is a fuzzy equivalence, it can be easily shown that µA×A and
µB×B are fuzzy equivalences and µA×B = µ−1

B×A
.

For each i ∈ I we have that µ ◦ R′
i
= R′

i
◦ µ is equivalent to

[
µ−1

B×A
◦ R−1

i
µA×A ◦ Ri

µB×B ◦ R−1
i
µB×A ◦ Ri

]
=

[
Ri ◦ µB×A Ri ◦ µB×B

R−1
i
◦ µA×A R−1

i
◦ µ−1

B×A

]
,

and this is equivalent to

µA×A ◦ Ri = Ri ◦ µB×B, (17)

µ−1
A×A ◦ Ri = (R−1

i ◦ µA×A)−1 = (µB×B ◦ R−1
i )−1 = Ri ◦ µ−1

B×B, (18)

(Ri ◦ µB×A)−1 = µ−1
B×A ◦ R−1

i = Ri ◦ µB×A, (19)

(µB×A ◦ Ri)
−1 = R−1

i ◦ µ−1
B×A = µB×A ◦ Ri. (20)

Clearly, (17) and (18) mean that (µA×A, µB×B) is a pair of regular fuzzy equiva-
lences on T , and (19) and (20) mean that µB×A is a {3, 4}-inverse of the family R.
Therefore, we have proved that µ is a regular fuzzy equivalence onO if and only
if (µA×A, µB×B) is a pair of regular fuzzy equivalences on T and µB×A is a {3, 4}-
inverse of the family R.

Suppose that µ is the greatest regular fuzzy equivalence on O. Let (λ, ̺) be
the greatest pair of regular fuzzy equivalences on T , and let V ∈ LB×A be the
greatest {3, 4}-inverse of the familyR. It is easy to verify that a fuzzy equivalence
on A ∪ B with the block representation

[
λ V−1

V ̺

]

is a regular fuzzy equivalence on O, whence
[
λ V−1

V ̺

]
6
[
µA×A µ−1

B×A
µB×A µB×B

]
,

and this implies

λ 6 µA×A, ̺ 6 µB×B, V 6 µB×A. (21)

According to the starting hypotheses on λ, ̺ and V, the inequalities opposite to
the inequalities in (22) also hold, so these inequalities are turned into equalities.
This means that (µA×A, µB×B) is the greatest pair of regular fuzzy equivalences
on T and µB×A is the greatest {3, 4}-inverse of the family R.

Conversely, let (µA×A, µB×B) be the greatest pair of regular fuzzy equivalences
on T and µB×A the greatest {3, 4}-inverse of the family R. Let θ be an arbitrary
regular fuzzy equivalence on O, and assume that

θ =

[
θA×A θ−1

B×A
θB×A θB×B

]
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is its block representation. As we have already shown, (θA×A, θB×B) is a pair of reg-
ular fuzzy equivalences on T and θB×A is a {3, 4}-inverse of the family R, which
implies

θA×A 6 µA×A, θB×B 6 µB×B, θB×A 6 µB×A, (22)

so θ 6 µ. Therefore, µ is the greatest regular fuzzy equivalence on O. ⊓⊔
According to the previous theorem, the greatest pair of regular fuzzy equiv-

alences on a two-mode fuzzy relational system T can be computed through the
greatest regular fuzzy equivalence on the related one-mode fuzzy relational sys-
tem O. Additionally, it is also possible to compute the greatest regular fuzzy
equivalence on O through the greatest pair of regular fuzzy equivalences on T
and the greatest {3, 4}-inverse of the familyR. However, this approach is only in-
teresting from a theoretical point of view, because its computational use leads to
an increase in the size of matrices (representing relations), which further incre-
ases the memory and computational complexity. From this aspect, the direct
method of simultaneous computing the greatest pair of regular fuzzy equiva-
lences on T is a better solution.

It can be easily verified that the conversion method defined by (15) does not
work when we want to link solutions to systems (3) and (12), (4) and (10), (5)
and (11), (7) and (13), or (8) and (14). For this purpose we have to slightly modify
the definition of the one-mode fuzzy relational system O = (A∪ B,R′). Namely,
instead by (15), we define the family R′ = {R′

i
}i∈I of fuzzy relations on A ∪ B by

R′i =
[
0A×A Ri

0B×A 0B×B

]
, for each i ∈ I. (23)

We have that the following theorem is true.

Theorem 2. LetT = (A,B,R) be a two-mode fuzzy relational system, withR = {Ri}i∈I,
let O = (A ∪ B,R′) be the one-mode conversion of T specified by (23), and let ξ be a
fuzzy quasi-order on A ∪ B with the block representation

ξ =

[
ξA×A ξA×B

ξB×A ξB×B

]
. (24)

Then ξ is the greatest regular fuzzy quasi-order on O if and only if the following
statements are true

(A) (ξA×A, ξB×B) is the greatest pair of regular fuzzy quasi-orders on T ;

(B) ξB×A is the greatest solution to the system of fuzzy relation equations

Ri ◦U = 0A×A, U ◦ Ri = 0B×B, (i ∈ I), (25)

where U is an unknown taking values in LB×A.

Proof. This theorem can be proved in a similar way as Theorem 1.
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In addition, if ξ is a fuzzy equivalence, then it i clear that ξ is the greatest reg-
ular fuzzy equivalence on O if and only if (ξA×A, ξB×B) is the greatest pair of reg-
ular fuzzy equivalences on T and ξB×A is the greatest solution to (25). We can
also easily show that the conversion method defined by (23) in the same way
links solutions to systems (4) and (10), (5) and (11), (7) and (13), and (8) and (14).

It should also be noted that the greatest solution to (25) is the fuzzy relation
from LB×A represented in terms of residuals as follows:

∧

i∈I

(Ri\0A×A) ∧ (0B×B/Ri).
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in: L. Kóczy, J. Kacprzyk, J. Medina (eds.), ESCIM 2016, Studies in Computational
Intelligence, to appear
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An adjoint pair for intuitionistic L-fuzzy values
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Abstract. We continue our prospective study of the generalization of
formal concept analysis in terms of intuitionistic L-fuzzy sets. The main
contribution here is an adjoint pair in the set LILF of intuitionistic L-
fuzzy values associated to a complete residuated lattice L, which allows
the definition of a pair of derivation operators which form an antitone
Galois connection.

Keywords: formal concept analysis, complete residuated lattice, intu-
itionistic fuzzy sets

1 Introduction

In this work, we continue our study of the extension of Formal Concept Anal-
ysis (FCA) to the so-called intuitionistic fuzzy sets (IF-sets), introduced in [1]
by considering for all element x a membership degree µ(x) together with a
non-membership degree ν(x) such that µ(x) + ν(x) ≤ 1, somehow allowing an
indetermination degree about x in the case of strict inequality. This construction
was later generalized when allowing a complete residuated lattice instead of the
unit interval as underlying set of truth-values [2, 5]. Although some authors have
already introduced intuitionistic extensions of FCA (for instance [10, 12] or [11]),
all of them are based on the unit interval.

In [7], we introduced for the first time a definition of concept-forming op-
erators purely based on intuitionistic L-fuzzy (ILF) sets valued on a complete
residuated lattice. In order to get a Galois connection in the antitone case, the
ILF-formal context had to provide values without indetermination, i.e. ν(x) =
¬(µ(x)), which are essentially equivalent to (usual) L-fuzzy sets. Then in [8] an
alternative approach was presented, in terms of isotone Galois connection and
an adjoint triple.

In this paper, we construct an adjoint pair in order to generate (by stan-
dard means) a Galois connection in the set of intuitionistic L-fuzzy sets which,
contrariwise to [7], need not be indetermination-free.
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2 Preliminary definitions

As stated above, we will be primary dealing with truth-values not necessarily
belonging to the unit interval, but to a complete residuated lattice (see [6] for
further details).

Definition 1. An algebra L =
〈
L,∧,∨, 0, 1,⊗,→

〉
is said to be a complete

residuated lattice if

1.
〈
L,∧,∨, 0, 1

〉
is a complete lattice where 0 and 1 are the bottom and top

elements (resp.).
2.
〈
L,⊗, 1

〉
is a commutative monoid.

3. 〈⊗,→〉 is an adjoint pair, i.e. k ⊗m ≤ n if and only if k ≤ m → n, for all
k,m, n ∈ L, where ≤ is the ordering generated by ∧ and ∨.

Let us recall the notion of intuitionistic fuzzy set defined on a complete
lattice, as introduced in [?].

Definition 2. Given a complete lattice L together with an involutive order re-
versing operation N : L→ L, and a universe set E. An intuitionistic L-fuzzy set
(ILF set) A in E is defined as an object having the form:

A =
{
〈x, µA(x), νA(x)〉 | x ∈ E

}

where the functions µA : E → L and νA : E → L define the degree of membership
and the degree of non-membership, respectively, to A of the elements x ∈ E, and
for every x ∈ E:

µA(x) ≤ N(νA(x)) .

When the previous inequality is strict, there is a certain indetermination degree
on the knowledge about x.

Note that, when the underlying lattice is residuated, we already have a nega-
tion operator defined by ¬x = x→ 0. As a result, we can define the ILF-lattice
associated with a given residuated lattice L as follows:

Definition 3. Given a complete residuated lattice L =
〈
L,∧,∨, 0, 1,⊗,→

〉
, we

can consider the lattice of intuitionistic truth values

LILF =
〈
{〈k1, k2〉 ∈ L× L | k2 ≤ ¬k1},≤

〉

where ordering ≤ on LILF is defined as follows 〈k1, k2〉 ≤ 〈m1,m2〉 when k1 ≤ m1

and k2 ≥ m2.

Note that LILF is just the construction of the Pareto ordering, as used in [4],
considering L as the underlying set of truth-values instead of the unit interval.
Consider also the following notation for any element of LILF as follows a =
〈a1, a2〉.



Lemma 1. 〈LILF,≤〉 forms a complete lattice in which the meet and join are
defined by

∧

i∈I
ai =

〈∧

i∈I
ai1;

∨

i∈I
ai2

〉 ∨

i∈I
ai =

〈∨

i∈I
ai1;

∧

i∈I
ai2

〉

Proof. It is enough to check that the above defined meet and join actually are
elements of LILF, since the rest is straightforward.

Given {ai | i ∈ I} ⊆ LILF, recall that for any ai ∈ LILF it holds that
ai2 ≤ ¬ai1. Hence

∧
i∈I ai2 ≤

∧
i∈I ¬ai1 =

∧
i∈I(ai1 → 0) = (

∨
i∈I ai1 → 0) =

¬∨i∈I ai1.
On the other hand, we also have that ai1 ≤ ¬ai2 for all i ∈ I. Hence∧

i∈I ai1 ≤
∧
i∈I ¬ai2 = ¬∨i∈I ai2, which is equivalent to

∨
i∈I ai2 ≤ ¬

∧
i∈I ai1.

ut

The definition of the conjunctor in LILF (to be introduced in the next section)
will make use of the following operator:

Definition 4. The operator ⊕ : L× L→ L is defined by

a⊕ b = ¬a→ b = (a→ 0)→ b.

Assuming an involutive negation, it is not difficult to check the De Morgan
laws between ⊗ and ⊕, contraposition, and associativity and commutativity
of ⊕:

Lemma 2. The following equalities hold

¬(a⊗ b) = ¬a⊕ ¬b ¬(a⊕ b) = ¬a⊗ ¬b a→ b = ¬b→ ¬a

Proof. It is straightforward checking; note that double negation is only used in
the second and third equalities.

¬(a⊗ b) = (a⊗ b)→ 0 = a→ (b→ 0)

= a→ ¬b = ¬a⊕ ¬b
¬(a⊕ b) = ¬(¬¬a⊕ ¬¬b) = ¬¬(¬a⊗ ¬b)

= ¬a⊗ ¬b

¬b→ ¬a = (b→ 0)→ (a→ 0) = ((b→ 0)⊗ a)→ 0

= (a⊗ (b→ 0))→ 0 = a→ ((b→ 0)→ 0)

= a→ ¬¬b = a→ b

ut

If we think of a→ b as ¬a⊕b, then it is easy to see that ¬(a→ b) = (a⊗¬b).

Lemma 3. Let L be a complete residuated lattice endowed with an involutive
negation (i.e. ¬¬a = a). Then ⊕ is commutative and associative.



Proof. Firstly,
From a→ b = ¬b→ ¬a we obtain commutativity of ⊕

a⊕ b = ¬a→ b = ¬b→ a = b⊕ a.
Associativity is straightforward

(a⊕ b)⊕ c = ¬(a⊕ b)→ c = (¬a⊗ ¬b)→ c

= ¬a→ (¬b→ c) = ¬a→ (b⊕ c) = a⊕ (b⊕ c)
ut

Hereafter we will assume that L satisfies the double negation law.

3 The complete residuated lattice LILF

We will define an intuitionistic conjunctor on LILF with the help of the operators
⊗ and ⊕.

Definition 5. Let LILF be the ILF-lattice associated to a residuated lattice L.
We define two binary operations on LILF by

〈a1; a2〉� 〈b1; b2〉 = 〈a1 ⊗ b1; a2 ⊕ b2〉
〈b1; b2〉⇒ 〈c1; c2〉 = 〈(b1 → c1) ∧ (¬b2 → ¬c2); (¬b2 ⊗ c2)〉

for all 〈a1, a2〉, 〈b1, b2〉, 〈c1, c2〉 ∈ LILF.

The following lemma shows that both operations are well defined. Formally,

Lemma 4. � and ⇒ are internal binary operations in LILF.

Proof. We have just to check the condition for belonging to LILF, namely, the
non-membership degree is less or equal than the negation of the membership
degree. In the following chain of equalities we will use the De Morgan laws from
Lemma 2.

1. a2 ≤ ¬a1 and b2 ≤ ¬b1. Hence because of the monotonicity of ⊕ we have
a2 ⊕ b2 ≤ ¬a1 ⊕ ¬b1 = ¬(a1 ⊗ b1).

2. ¬(¬b2 ⊗ c2) = b2 ⊕ ¬c2 = ¬b2 → ¬c2 ≥ (¬b2 → ¬c2) ∧ (b1 → c1). Hence
¬b2 ⊗ c2 ≤ ¬((¬b2 → ¬c2) ∧ (b1 → c1)). ut
We can now state and prove the main contribution of this work.

Theorem 1. 〈LILF, 〈1, 0〉, 〈0, 1〉,�,⇒〉 is complete residuated lattice.

Proof. Firstly, LILF is a complete lattice, by Lemma 1.
〈LILF,�, 〈1, 0〉〉 forms a commutative monoid, by commutativity of⊗, Lemma 3

and the definition of �. Commutativity of ⊗ and ⊕ will be used repeatedly in
the rest of the proof.

Finally, let us know prove that 〈�,⇒〉 is an adjoint pair on LILF which, in
our case, means the following:

〈a1 ⊗ b1, a2 ⊕ b2〉 ≤ 〈c1, c2〉 ⇐⇒ 〈a1, a2〉 ≤ 〈(b1 → c1) ∧ (¬b2 → ¬c2),¬b2 ⊗ c2〉



⇒: Let us assume that 〈a1 ⊗ b1, a2 ⊕ b2〉 ≤ 〈c1, c2〉.
From the second component we have that a2 ⊕ b2 ≥ c2 but a2 ⊕ b2 = ¬b2 →
a2 ≥ c2, and that is equivalent to a2 ≥ ¬b2 ⊗ c2.
From the first component we have a1 ⊗ b1 ≤ c1, which is equivalent to
a1 ≤ b1 → c1. Moreover, using 〈a1, a2〉 ∈ LILF and the previous inequality,
we obtain a1 ≤ ¬a2 ≤ ¬(¬b2 ⊗ c2) = ¬¬b2 ⊕ ¬c2 = ¬b2 → ¬c2. Hence,
a1 ≤ (b1 → c1) ∧ (¬b2 → ¬c2).
As a result, we obtain

〈a1, a2〉 ≤ 〈(b1 → c1) ∧ (¬b2 → ¬c2),¬b2 ⊗ c2〉

⇐: Conversely, let us assume that 〈a1, a2〉 ≤ 〈(b1 → c1)∧(¬b2 → ¬c2),¬b2⊗c2〉.
From the first component we obtain a1 ≤ (b1 → c1)∧(¬b2 → ¬c2) ≤ b1 → c1,
which is equivalent to a1 ⊗ b1 ≤ c1.
From the second component we have a2 ≥ ¬b2 ⊗ c2, which is equivalent to
¬b2 → a2 = a2 ⊕ b2 ≥ c2. Hence

〈a1 ⊗ b1, a2 ⊕ b2〉 ≤ 〈c1, c2〉.

ut

4 Antitonic ILF Formal Concept Analysis

Theorem 1 is the key to build a consistent version of formal concept analysis
interpreted on LILF. To begin with, the notion of ILF-formal context is given as
follows:

Definition 6. Let L be a complete residuated lattice and LILF be its associated
lattice of ILF degrees. A triple 〈B,A, r〉, where r : B × A → LILF, is said to be
an ILF-formal context where B is the set of objects and A the set of attributes.

The definition of the concept-forming operators associated with an ILF-
formal context is introduced in the standard way in terms of ⇒.

Definition 7. Let L be a complete residuated lattice and let LILF be its associ-
ated lattice of ILF values. Given an ILF-formal context 〈B,A, r〉, we define a pair
of mappings 〈�,�〉 between the intuitionistic LILF-fuzzy powersets 〈LILF

B ,⊆〉
and 〈LILF

A,⊆〉 as follows

a) �f(a) =
∧
b∈B(f(b) ⇒ r(b, a)), for all f ∈ LILF

B

b) �g(b) =
∧
a∈A(g(a) ⇒ r(b, a)), for all g ∈ LILF

A.

The pair of mappings 〈�,�〉 are the concept forming operators for the IF-formal
context 〈B,A, r〉.

Theorem 2. Let L be a complete residuated lattice and LILF its associated lat-
tice of intuitionistic degrees. Let 〈B,A, r〉 be an IF-formal context. Then 〈�,�〉
forms a Galois connection between powersets 〈LBILF,⊆〉 and 〈LAILF,⊆〉.



Proof. Follows from Theorem 1 and the standard construction on a complete
residuated lattice (see, for instance, [3]). ut

The notion of concept in this framework follows the standard approach, and
is defined as a fixpoint of the Galois connection from Theorem 2. Similarly, the
set of concepts can be ordered by the suitable extension of the subset/superset
hierarchy.

5 Conclusions and future work

An adjoint pair has been defined on the set of ILF values associated to a complete
lattice L and, as a result, an antitone Galois connection can be induced between
the powersets of ILF sets. This result improves a previous attempt in which the
Galois connection was only obtained under the assumption that the underlying
context is indetermination-free (i.e. µ(x)+ν(x) = 1 in the standard terminology
of IF sets).

As future work, we will study the possible existence of different (families of)
adjoint pairs so that the multi-adjoint framework of [9] could also be extended
to an ILF setting.
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9. O. Kŕıdlo and M. Ojeda-Aciego, “Towards intuitionistic L-fuzzy formal t-

concepts.,” In Joint World Congress of Intl Fuzzy Systems Association and Intl
Conf on Soft Computing & Intelligent Systems, 2017. To appear

10. J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calviño, “Formal concept analysis via
multi-adjoint concept lattices,” Fuzzy Sets and Systems, 160:130–144, 2009.

11. J. Pang, X. Zhang, and W. Xu, “Attribute reduction in intuitionistic fuzzy concept
lattices,” Abstract and Applied Analysis, 2013, article ID 271398. 12 pages.

12. F. Xu, Z.-Y. Xing, and H.-D. Yin, “Attribute reductions and concept lattices in
interval-valued intuitionistic fuzzy rough set theory: Construction and properties,”
Journal of Intelligent and Fuzzy Systems, 30:1231–1242, 2016.

13. L. Zhou, “Formal concept analysis in intuitionistic fuzzy formal context,” in 7th
Intl Conf on Fuzzy Systems and Knowledge Discovery, pp. 2012–2015, 2010.



On Possibilistic Version of Distance Covariance
and Correlation
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Abstract. Distance correlation is a relatively new measure of depen-
dence in probability theory and statistics, which has the great advantage
that it gives zero if and only if the variables are independent. In this
paper we define its possibilistic version. Namely, we equip each γ-level
set of the joint possibility distribution with a uniform probability dis-
tribution, then we determine the probabilistic distance covariance and
correlation between the marginal distributions. Finally, the possibilistic
distance covariance and correlation is computed as the weighted average
of these probabilistic measures of dependence.

Keywords: distance correlation, distance covariance, possibilistic cor-
relation, fuzzy numbers, dependence

1 Introduction

Measuring independence and quantification of the level of dependence plays a
fundamental role in probabiliy theory and statistics, but defining a suitable and
comfortable measure is not an easy task. The mathematical properties which a
‘good’ dependence measure should satisfy were listed by Rényi [1], and unfor-
tunatelly the most popular ones, for example Pearson’s correlation coefficient,
correlation ratio, mutual information do not satisfy all of them. The recently
introduced distance correlation [7] is a promising one (sometimes called the cor-
relation coefficient of the 21st century), although its name is quite missleading,
since it is not the correlation of distances.

The notion of independence has also a crucial role in possibility theory, simi-
larly to probability theory. There are several kinds of independence concepts (see
for example [2], [3]) and lot of measures of indepence, see for example [4] and
[5]. In this article we follow the method introduced by Fullér et al. [13], namely
the possibilistic measure of dependence is computed as a weighted average of
probabilistic ones defined on the crisp γ-levels sets.
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2 Distance Correlation

Distance correlation was introduced by Székely et al. [6][7], they also built it into
the framework of statistical procedures [8] [9].

The number of applications grows fastly, for example in astrophysics [10],
time-series analysis [11], neuro science [12].

The motivation is to point out if there are any dependencies between random
variables X and Y . It is well-known that they are independent if and only if
fXY = fX · fY , where fXY , fX and fY are probability density functions (pdf)
of (X,Y ), X and Y , respectively. This leads to measure the distance between
fXY and fX · fY , for example by a suitable norm ‖fXY − fX · fY ‖, but the pdfs
do not behave nicely, i.e. not always exist and may not be always continuous.
So instead of the pdf, it is more promising to use the charateristic function of
the random variables, which has the following form for a p dimensional random
vector X:

ϕX(t) = E
(
ei〈tx〉

)
=

∫

Rp

ei〈tx〉fX(x) dx (1)

The most important property is that the characteristic function shares the prop-
erty of the probability density function, i.e. ϕXY = ϕXϕY if and only if random
vectors X ∈ Rp and Y ∈ Rq are independent. Based on this fact, the distance
covariance is defined as follows:

dCov2(X,Y ) =

∫

Rp+q

|ϕXY − ϕXϕY|2 w(t, s) dtds (2)

Here the rule of weighting function w is to produce a scale and rotation invariant
measure that does not equal to zero for dependent random variables. Different
choices of w provide different types of covariance measures. In [7] Székely and
Rizzo applied the following non-integrable function

w(t, s) =
1

cpcq|s|1+pp |t|1+qq

(3)

where | · | denotes the Euclidean norm, and

cd =
π

d+1
2

Γ
(
d+1
2

) (4)

The distance covariance with this weight function is the square root of the fol-
lowing:

dCov2(X,Y ) =
1

cpcq

∫

Rp+q

|ϕX,Y (s, t)− ϕX(s)ϕY (t)|2

|s|1+pp |t|1+qq

dtds (5)

As in the case of the ‘original’ covariance, the correlation coefficient is defined
by covariances, using that Var(X) = Cov(X,X).

dCor(X,Y ) =
dCov(X,Y )√

dVar(X)dVar(Y )
(6)
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Most important properties of the distance correlation:

1. 0 ≤ dCor(X,Y ) ≤ 1 (note that Pearson’s correlation can be negative)
2. dCor(X,Y ) = 0 if and only if X and Y are independent (note that Pearson’s

correlation can be zero for dependent variables, too).

2.1 Sample Distance Correlation

The previous choice of parameters cp and cq (see Eq. 4) has a great advantage
that, in this case, we get a nice estimator for the distance covariance (and for
the variance also, and finally, for the distance correlation). Let (Xk, Yk), k =
1, 2, . . . , n be a sample of random variables (X,Y ) (they can be random vectors
also). Firstly, we compute the distance matrices a and b, using the Euclidean
distance ‖Xj −Xk‖:

aj,k = ‖Xj −Xk‖, for all j, k = 1, 2, . . . , n (7)

bj,k = ‖Yj − Yk‖, for all j, k = 1, 2, . . . , n (8)

Then compute the means of the rows (aj.), columns (a.k), and all elements of
the distance matrices (a..). Do the same for b. Define matrices A and B:

Aj,k = aj,k − aj. − a.k + a.. (9)

Bj,k = bj,k − bj. − b.k + b.. (10)

Finally, the sample distance covariance can be computed from the following
expression:

dCov2
n(X,Y ) =

1

n2

n∑

j,k=1

Aj,k Bj,k (11)

The sample distance correlation (using that Var(X) = Cov(X,X)):

dCorn(X,Y ) =
dCovn(X,Y )√

dVarn(X)dVarn(Y )
(12)

3 Possibilistic Distance Correlation

A fuzzy number A is a fuzzy set of R with a normal, fuzzy convex and continuous
membership function of bounded support. Fuzzy numbers can be considered as
possibility distributions. A fuzzy set C in R2 is said to be a joint possibility
distribution of fuzzy numbers A,B, if it satisfies the relationships

max{x | C(x, y)} = B(y), and max{y | C(x, y)} = A(x), (13)

for all x, y ∈ R. Furthermore, A and B are called the marginal possibility distri-
butions of C. A γ-level set (or γ-cut) of a possibility distribution C is a non-fuzzy
set denoted by [C]γ and defined by

[C]γ =

{
{(x, y) ∈ R2 | C(x, y) ≥ γ} if γ > 0

cl(suppC) if γ = 0
(14)



4 István Á. Harmati and Robert Fullér

where cl(suppC) denotes the closure of the support of C.
Fullér, Mezei and Várlaki introduced the definition of possibilistic correlation

coefficient [13] between marginal distributions of the joint possibility distribu-
tion, as an improvement of the earlier definition in [14]:

Definition 1. Let f : [0, 1] → R be a non-negative, monotone increasing func-

tion with the normalization property
∫ 1

0
f(γ)dγ = 1. The f -weighted possibilistic

correlation coefficient of fuzzy numbers A and B (with respect to their joint dis-
tribution C) is defined by

ρf (A,B) =

∫ 1

0

ρ(Xγ , Yγ)f(γ)dγ, (15)

where

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)√

var(Xγ)
√

var(Yγ)
,

and, where Xγ and Yγ are random variables whose joint distribution is uniform
on [C]γ for all γ ∈ [0, 1], and cov(Xγ , Yγ) denotes their probabilistic covariance.

Applying a similar approach, Fullér et al. defined other possibilistic measures
of dependence and determined their values for several type of joint possibility
distributions [15, 16]. In this way, we can give the definition of the possibilistic
distance correlation (and the possibilistic distance covariance, of course):

Definition 2. Let f : [0, 1] → R be a non-negative, monotone increasing func-

tion with the normalization property
∫ 1

0
f(γ)dγ = 1. The f -weighted possibilistic

distance correlation coefficient of fuzzy numbers A and B (with respect to their
joint distribution C) is defined by

dCorf (A,B) =

∫ 1

0

dCor(Xγ , Yγ)f(γ)dγ, (16)

where Xγ and Yγ are random variables whose joint distribution is uniform on
[C]γ , for all γ ∈ [0, 1].

4 Examples

In this section, we show examples for the possibilistic distance covariance and
correlation, when the joint possibility distribution has a special structure, namely
it is defined by a t-norm.

One of the most widely used t-norm is the minimum (min) operator. If the
joint possibility distribution is defined by the minimum of the marginal distri-
butions (fuzzy numbers) then it is referred as the case of non-interactivity [3].
Non-interactivity implies zero possibilistic correlation coefficent [13], and it is
true for possibilistic distance correlation, too, since in this case any γ-level set
can be transformed into the [0, 1]× [0, 1] domain by shifting and scaling (under
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these transformations the correlation coefficient is invariant). Using the charac-
teristic functions of the joint and marginal probability distributions, the distance
covariance can be determined as follows:

ϕX,Y (s, t) =

∞∫

−∞

∞∫

−∞

ei(xt+ys)f(x, y) dxdy = − (1− eit)(1− eis)
st

(17)

ϕX(t) =

∞∫

−∞

eixtf(x) dx =
i · (1− eit)

t
(18)

ϕY (t) =

∞∫

−∞

eistf(y) dy =
i · (1− eis)

s
(19)

It follows that |ϕX,Y (s, t)− ϕX(t) · ϕY (t)| = 0, which implies that dCov = 0
and dCor = 0 for every level set, so dCorf (A,B) = 0 for any weighting function.

Our other example is the case when the joint possibility distribution is defined
by the  Lukasiewicz t-norm, i.e.

C(x, y) =

{
x+ y − 1 if 0 ≤ x, y ≤ 1 and x+ y ≥ 0 ,

0 otherwise .
(20)

The γ-level sets of C are [C]γ =
{

(x, y) ∈ R2| γ ≤ x, y ≤ 1, x+ y ≥ 1 + γ
}

,
which are similar triangles, so it is enough to determine the correlation for
the case when γ = 0. Although this case is yet tractable, we solve it numer-
ically, because for more difficult joint distributions the exact computation of the
characteristic function based integral can be really tedious.

We generated random samples from a two dimensional uniform distribution
defined on [C]0. The number of samples was 100, the sample size was 1000 in
each cases. The mean of the sample distance correlation was 0.4732 (standard
deviation 0.0214). This suggest that there is no direct functional relationship
between the marginal possibility distributions, but they are not independent.

5 Summary

We introduced the notion of possibilistic distance correlation, applying similar
methodology we already used in the generalization of other probabilistic mea-
sures of dependence. The exact computation of this value often leads to really
difficult formulae, which highly depend on the boundaries of the γ-level sets.
Since in applications these boundaries are usually not certain and the very pre-
cise value of the correlation is not required, we recommend using the sample
distance covariance and correlation, after generating uniformly distributed val-
ues on the γ-level sets.

Although the possibilistic distance correlation don’t have any practical ap-
plications yet, as a future work we plan to apply it in analysis of hydrological
processes and time series, where stochastic and possibilistic uncertainty also
arise.
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1. A. Rényi, On measures of dependence, Acta Mathematica Hungarica, 10, no. 3
(1959): 441-451.

2. L. M. de Campos, J. F. Huete, Independence concepts in possibility theory: Part
I, Fuzzy Sets and Systems 103 (1999), pp. 127-152.
Part II. Fuzzy Sets and Systems 103 (1999), pp. 487-505.

3. R. Fullér, P. Majlender, On interactive fuzzy numbers, Fuzzy Sets and Systems,
143, 355–369 (2004) doi: 10.1016/S0165-0114(03)00180-5

4. S.T. Liu, C. Kao, Fuzzy measures for correlation coefficient of fuzzy numbers, Fuzzy
Sets and Systems, 128(2002), pp. 267-275.

5. D.H. Hong, Fuzzy measures for a correlation coefficient of fuzzy numbers under
TW (the weakest t-norm)-based fuzzy arithmetic operations, Information Sciences,
176(2006), pp. 150-160.
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13. R. Fullér, J. Mezei and P. Várlaki, An improved index of interactivity for fuzzy
numbers, Fuzzy Sets and Systems 165, 50–60 (2011) doi:10.1016/j.fss.2010.06.001

14. C. Carlsson, R. Fullér and P. Majlender, On possibilistic correlation, Fuzzy Sets
and Systems, 155, 425-445 (2005), doi: 10.1016/j.fss.2005.04.014
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Abstract. Fact-checking has recently become a real world hot topic, especially 
in what concerns political claims. Several big players, such as, for example, 
Google or Facebook, have started addressing/making contributions to make 
“Fact-checking” possible/available to the general public. However, most, if not 
all Fact-checking platforms are largely manual, in the sense that most of the 
contributions and of the actual checking is performed by humans. Automatic 
computational Fact-checking is still very far from being reliable and available 
on a large scale. In this paper we contribute to the goal of automatic Fact-
checking by presenting a fuzzy approach to computing sentence checkability, 
i.e., to answer the question: “is it possible to know if a sentence is worth to be 
checked?” 

Keywords: Automatic Fact-checking, Sentence checkability, Fuzzy sets, Natu-
ral Language Processing. 

1 Introduction: Is a sentence checkable? How checkable is it? 

With the widespread of the internet, and the social web playing such an important role 
in peoples’ lives, the necessity for automatic ways to validate the veracity of the in-
formation circulating in the web is increasing rapidly, and is currently a very hot top-
ic. Automated Fact-checking is the name given to the process of, given a claim, a fact 
or, in general, a sentence, automatically assess its veracity based on publicly available 
sources of information in the internet. This paper focuses on one of the first steps 
deemed necessary to achieve “Automated Fact-checking”: measure the potential for a 
sentence “checkability”.  

As an example of a sentence that can be checked, or, its veracity can be assessed, is 
“Albert Einstein was born in 1879 in Germany”. On the opposite side, “What was 
accomplished yesterday was nearly perfect” can’t be checked, because, not only it’s 
not easy to define what is “perfect” and what a “perfect event” is, but also it’s impos-
sible to define what a “nearly perfect event” is.  

The exact meaning of “what is checkable” or “check-worthy” is not trivial. In this 
work we opted to consider that “checkable sentences” must be factoids [1] or exhibit 
similar characteristics. A factoid is a fact that has appeared in the news (in our case, a 
fact that can be checked in the internet). In this paper we propose an approach based 
on Natural Language Processing (NLP) and Fuzzy sets to address a way to indicate 
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how checkable a factoid is. The approach measures the potential of the quality of a 
future fact search and the accuracy of the veracity classification, i.e., the higher the 
checkability, the higher should be the chance to get a correct classification. As an 
example, “Albert Einstein was born in 1879” should score less than “Albert Einstein 
was born in 1879 in Germany”, since the search related to the latter will have more 
relevant information and the classification has more relevant information to check. 

2 Related work 

Even though Fact-checking is currently a hot-topic, current technologies for full au-
tomated Fact-checking are still either too dependent on “manual labour” or limited in 
scope. 

Most of the research work in Fact-checking addresses search and veracity classifi-
cation. In this sub-topic it is possible to find several major players using different 
algorithms and (mostly manual) implementations: FightHoax (based on Artificial 
Intelligence) [2], WikiTribune (the facts are verified by professional journalists) [3], 
Google’s Fact Check (labels news or claims that are fact-checked by news publishers 
or Fact-checking organizations) [4] or politifacts (claims classified by editors and 
reporters from the Tampa Bay Times) [5]. 

Regarding the identification of check-worthy sentences, works are much sparser, 
and the only solution with some traction is ClaimBuster, which classifies a sentence’s 
checkability in respect to “how factual it is” and “how relevant to the public it is if 
checked” [6]. However, ClaimBuster is very limited and its results highly questiona-
ble. For example, the claim “Donald Trump plans to build a wall dividing USA and 
Mexico” scores 22% in ClaimBuster [7]. The “check-worthiness” of a claim is rela-
tive and different for each person, but a score of 22% (almost not checkable) seems 
too low for a well-written and relevant present day claim. 

3 Computing a sentence checkability 

As indicated above, we assume that the sentence to be checked is a factoid, and, a 
priori, checkable. We propose to compute the sentence checkability based on the 
sentence’s subjectivity, sentiment and opinion level, entropy and use of keywords. 
We make use of (mostly NLP) tools that are publicly available to compute how the 
sentence scores regarding those factors, and use expert fuzzy knowledge to aggregate 
the information. Finally we perform some syntax and semantic analysis to adjust the 
proposed checkability score. The following sections describe each step of the process.   

3.1 Subjectivity and Sentiment/Opinion Score 

By analyzing sentences used in claims extracted from articles and news, it was clear 
that sentiment and the expressing of opinions should be taken into account when 
computing how checkable a sentence is. For example “Hotel X was very comforta-
ble”, reveals a personal opinion and, so, is considerably less checkable than, for say, 



 

“Hotel X has 120 rooms”. Sentiment Vader [8], from the package NLTK, was used to 
assess the level of sentiment or opinion on a sentence. Since this method is dedicated 
to  “Opinion Mining”, which is not exactly the task we are addressing, we introduced 
a subjectivity classification in order to adapt and improve the results. NLTK Senti-
ment Utils [9] was used to perform the subjectivity classification.  

The Sentiment/Opinion Score is used only when the sentence is classified as “Sub-
jective” or this score is above a given threshold. Through testing and fine-tuning it 
was decided to use 0.6 as the Sentiment/Opinion threshold score. 
 
3.2 Entropy and Keywords Score 

Two other metrics deemed important to compute the checkability of a sentence are the 
amount of information within a sentence, and the use and importance of keywords. 
The more information on the sentence, the more information there is to check and the 
more definite the entities on the sentence are. 

Modified Shannon Entropy. Computing the entropy is the most reasonable step 
to measure the amount of information on a sentence. Entropy uses probabilities of 
each symbol, or words in this case, to compute the desired measure. We used Shan-
non Entropy [10]: 

𝑃 𝑥! = !!
!!!

!!!
 ,𝑤𝑖𝑡ℎ 𝑁! = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑!           (1) 

 
To improve results, not all of the words on the sentence were used. From the usual 

Bag of Words we excluded: 

• Stop words from NLTK corpus (“the”, for example) [11]; 

• Words (not numbers) with less than 3 characters (“Mr”, for example); 

• All the punctuation (“,”, “;”,”!”, etc.). 

Keywords Score - Modified RAKE. Finally we quantify the sentence’s keywords 
and their relevance. This score is a “dual” of the Entropy Score since it also measures 
the information on the sentence. However, with this score we try to measure the rele-
vance of the information instead of the amount of information.  

To compute this score, a very simplistic approach was used: the RAKE method 
[12]. This method identifies keywords by going through the sentence and splitting it 
to remove stopwords. The method finds keywords sets and computes a score for each 
set. The final Keywords Score is simply the sum of the sets’ scores. Each score is 
computed based on: the number of words (consecutive non-stopwords) and the num-
ber of occurrences of each one on the sentence. To improve results the method was 
modified as follows: 

• Punctuation was removed from the sentence before applying the method;  

• Since RAKE does not give, for itself, score to numbers and numbers take a 
huge part in Fact-checking (dates, values, percentages, amounts, etc.), the 
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RAKE output was modified to 1.5 if the set is a number (i.e. numbers are 
worth slightly more than one word).  

Normalization.  Shannon’s entropy and RAKE scores can take values between 0 
and +∞, and there is no perception of what is an optimum or even a good value in 
what concerns measuring a sentence checkability. With this in mind, we devised a 
normalization procedure for both scores using several training sentences containing 
different amounts of information (manually classified with a desired score).  Fig. 1 
shows the normalization result for the training {computed value, desired score} pairs. 
The computed entropy was represented in 2H(x), with H(x) being the entropy computed 
using (1). Linear interpolation is applied to obtain a score to any computed value. As 
a result of the normalization procedure we obtain fuzzifiable scores. 

  
Fig. 1. Normalization of the computed Entropy and RAKE scores  

3.3 Fuzzy Score Aggregation  

The aggregation of the computed scores is done using expert knowledge expressed by 
a Fuzzy If-Then Mandani rule base (implemented using [13]). Fuzzy Sets were cho-
sen because of the following reasons: 

• Scores are normalized and can take any value between 0 and 1; 

• The several thresholds, parameters and functions used to manipulate, adapt 
and compute the individual scores, were used based on testing and expert 
knowledge, and are not proven to be optimal.  Therefore the method to be 
used should be robust and not change drastically with further changes of the-
se defined parameters; 

• Expert knowledge was easy to implement and gave sound preliminary re-
sults.  

We defined three membership functions for the inputs (Low, Medium and High).  
Experts found it difficult to use more than three linguistic terms when devising the 
rules for this problem. We used five membership functions evenly distributed through 
the Universe of Discourse (VL, L, M, H, VH) to indicate Checkability. Trapezoidal 
functions provided the best trade-off between complexity and accuracy of the result 



 

(Triangular was found to be slightly worse). The membership functions were defined 
as represented in Fig. 2. 

 

 
Fig. 2. Membership functions for the three input scores 

Table 1. shows the fuzzy rulebase used to aggregate the computed scores. Each 
line contains one rule of the type “IF Sentiment/Opinion score is A, and Entropy score 
is B, and Keywords score is C, THEN Checkability is Z”, where A, B, C and Z are 
fuzzy linguistic membership functions. The rules were defined based on expert 
knowledge and annotated data examples. 

Table 1. Fuzzy Rulebase used for score aggregation  

Sentiment/Opinion Entropy Keywords Checkability 
High - - Very Low 

Medium Low - Very Low 
Medium - Low Very Low 

- Low Low Very Low 
Medium or High Medium or High Medium or High Low 

Low Medium Low Low 
Low Low Medium Low 
Low Medium Medium Medium 
Low Low High Medium 
Low High Low Medium 
Low Medium High High 
Low High Medium High 
Low High High Very High 

3.4 Syntax and Semantic adjustment 

Some additional metrics based on the syntax and the semantics of the sentence were 
added in order to further improve the obtained score. 

We identify valid/invalid temporal expressions or locations using Semantic Role 
Labeling [14] based on SENNA [15]. The reasoning behind this procedure is that 
sentences that refer to a non-existing location or time, are obviously less checkable. 
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After senna identifies such expressions, we try to validate them with Ternip (temporal 
expressions) [16] or a custom database built based on GeoNames [17] and Google 
Places (locations) [18]. The sentence checkability is penalized by 40% if all expres-
sions are invalid, or increased by 10% if an expression is valid. 

Then we check whether after applying Coreference Resolution, performed using 
CoreNLP [19], the sentence still contains personal pronouns. If affirmative, i.e., 
CoreNLP could not find the entity to link the pronoun, then the sentence’s checkabil-
ity is decreased by 40%. 

Finally we identify indefinite entities, such as, for example “The ship …”. 
CoreNLP does a syntactic analysis [20] on the sentence that is used to group Noun 
Phrases (NP). In each group, each common noun is verified for the existence of arti-
cles (such as “a”) or adjectives (such as “several”) before the noun and some words 
after the noun that can describe it. If there is an article or adjective before the noun 
but no following words (on the same NP group), the sentence’s checkability is de-
creased by 40%. 

4 Preliminary results, Conclusions and Future Work 

The described approach has been implemented and tested in a large range of sentenc-
es. Preliminary results are sound, very encouraging and compare very favorably 
against ClaimBuster. Table 2. shows some examples of the computed checkability. 

Table 2. Preliminary results and comparison with ClaimBuster [7] 

Sentence ClaimBuster 
Score 

Computed 
Checkability 

“HSBC lays off 120 technology staff in Hong Kong in cost-
cutting plan” 37% 100% 

“Thomas Edison invented the first commercial light bulb in 1879” 35% 100% 
“Donald Trump plans to build a wall dividing USA and Mexico” 22% 91.67% 

“In state after state polls make clear that the American public 
understands the Kelo ruling is a disaster” 36% 54% 

“Lisbon has a weak system of public transports” 18% 27% 
“Seven US Navy crew members are missing after their ship col-

lided with a merchant vessel off the coast of Japan.” 45% 55% 

“Seven US Navy crew members are missing after their ship col-
lided with a merchant vessel off the coast of Japan” (Same sen-
tence as above, excluding the period. The score should be equal) 

39% 55% 

“Donald Trump : It's -- the premiums are going up 60 percent, 70 
percent, 80 percent.” 76% 34.78% 

Proper validation, including ClaimBuster comparisons, using an extensive dataset 
and external expert evaluators is obviously needed to support the conclusions, and is 
currently under way.  

Despite the interesting results, the proposed approach still has room for improve-
ment, especially in what concerns the optimization of the fuzzy sets and rulebase 
(which could be automatically tuned once enough data is available after the ongoing 



 

validation). Other possible improvements include the fuzzification of the Syntactic 
and Semantic adjustments. 

Acknowledgments 

Work supported by national funds through Fundação para a Ciência e a Tecnologia 
(FCT) under reference UID/CEC/50021/2013. 

References 

1. Daven Hiskey (2010), http://www.todayifoundout.com/index.php/2010/02/the-difference-
between-a-fact-and-a-factoid/, last accessed 2017/06/09 

2. FightHoax Homepage, http://fighthoax.com, last accessed 2017/06/11 
3. WikiTribune Homepage, https://www.wikitribune.com, last accessed 2017/06/11 
4. Justin Kosslyn and Cong Yu (2017), https://blog.google/products/search/fact-check-now-

available-google-search-and-news-around-world/, last accessed 2017/06/11 
5. Politifact Homepage, http://www.politifact.com/truth-o-meter/, last accessed 2017/06/11 
6. Hassan, N. et al. (2015), The Quest to Automate Fact-Checking, Proceedings of the 2015 

Computation+Journalism Symposium. 
7. ClaimBuster Demo, http://idir-server2.uta.edu/claimbuster/demo, last accessed 2017/06/11 
8. Hutto, C.J. and Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sen-

timent Analysis of Social Media Text. Eighth International Conference on Weblogs and 
Social Media (ICWSM-14). Ann Arbor, MI, June 2014. 

9. Bo Pang and Lillian Lee (2004), “A Sentimental Education: Sentiment Analysis Using 
Subjectivity Summarization Based on Minimum Cuts'', Proceedings of the ACL 

10. Wiktionary, https://en.wiktionary.org/wiki/Shannon_entropy, last accessed 2017/05/20 
11. NLTK Corpus, http://www.nltk.org/howto/corpus.html, last accessed 2017/05/16 
12. Rose, S., Engel et al. (2010), Automatic Keyword Extraction from Individual Documents. 

In M. W. Berry & J. Kogan (Eds.), Text Mining: Theory and Applications 
13. Joshua D. Warner et al. (2017, June 4). JDWarner/scikit-fuzzy: Scikit-Fuzzy 0.3. Zenodo. 

http://doi.org/10.5281/zenodo.802397 
14. Daniel Jurafsky and James H. Martin (2015), Speech and Language Recognition, 3rd edi-

tion draft, Chapter 22 - Semantic Role Labeling 
15. Collobert, R. et al. (2011), Natural Language Processing (Almost) from Scratch, Journal of 

Machine Learning Research (JMLR) 
16. Ternip – Temporal Expression Recognition and Normalization, 

https://github.com/cnorthwood/ternip, last accessed 2017/05/25 
17. GeoNames Database, http://www.geonames.org/export/, last accessed 2017/05/25 
18. GooglePlaces, https://developers.google.com/places/web-service, last accessed 2017/05/25 
19. Kevin Clark and Christopher D. Manning. 2015. Entity-Centric Coreference Resolution 

with Model Stacking. In: Association for Computational Linguistics 
20. Daniel Jurafsky and James H. Martin (2015), Speech and Language Recognition, 3rd edi-

tion draft, Chapter 12 – Syntactic Parsing 



adfa, p. 1, 2011. 

© Springer-Verlag Berlin Heidelberg 2011 

Reduced Model Investigations supported by Fuzzy 

Cognitive Map to Foster Circular Economy 

Adrienn Buruzs
1
, Miklós F. Hatwágner

2
, and László T. Kóczy

3
 

1Department of Environmental Engineering, Széchenyi István University, Győr, Hungary 

buruzs@sze.hu 
2Department of Information Technology, Széchenyi István University, Győr, Hungary 

miklos.hatwagner@sze.hu 
3Department of Automation, Széchenyi István University, Győr, Hungary and Department of 

Telecommunications and Media Informatics, Budapest University of Technology and  

Economics, Hungary 

koczy@sze.hu, koczy@tmit.bme.hu 

Abstract. The aim of the present paper is to develop an integrated method that 

provide assistance to decision makers during system planning, design, operation 

and evaluation.  

In order to support the realization of Circular Economy (CE) it is essential to 

evaluate local needs and conditions that help to select the most appropriate sys-

tem-components and resources needed. Each of these activities requires careful 

planning, however, the model of CE offers a comprehensive interdisciplinary 

framework.  

The aim of this research was to develop and to introduce a practical method-

ology for evaluation of local and regional opportunities to promote CE. 

Keywords: factors, fuzzy cognitive map, model reduction, circular economy, 

sustainability. 

1 Introduction 

A. General Introduction and Motivation 

The concept ‘sustainability’ is literally about maintaining of human existence. The 

importance of the topic of sustainability has become increasingly significant over the 

last fifty years due to an intensive population growth with massive per capita resource 

consumption on a finite planet. Above all, it is necessary to clarify that sustainability 

is not an exact discipline such as, for example, mathematics. Rather it is a multidisci-

plinary science incorporating nearly all of human knowledge in approximately equal 

parts and with more or less equal importance. In sustainability, the combination of 

different disciplines appears, from the natural science, through social sciences to en-

gineering sciences, including politics. The reasons for this is that sustainability is 

about sustaining human existence which requires many information and comprehen-



sive knowledge to be maintained. 

The term ‘circular economy’ is quickly attracted attention as a way of separating 

growth from resource limitations. It opens the way to comply the outlook for growth 

and economic participation with that of environmental awareness and equity. The 

concept of CE is to an increasing extent treated as a solution to series of challenges 

such as waste generation, resource scarcity and sustaining economic benefits [4]. In 

the last few years, CE is receiving increasing attention worldwide as a way to over-

come the current production and consumption model based on continuous growth and 

increasing resource throughput. By promoting the adoption of closing-the-loop pro-

duction patterns within an economic system CE aims to increase the efficiency of 

resource use, with special focus on urban and industrial waste, to achieve a better 

balance and harmony between economy, environment and society [5]. The circular 

economy provides a framework to challenge and guide us to rethink and redesign our 

future. 

Such redesigns and decision problems are usually characterized by numerous issues 

or concepts interrelated in a complex way. Formulating a quantitative mathematical 

model for such systems and frameworks as circular economy may be difficult or im-

possible due to lack of numerical data and dependence on imprecise verbal expres-

sions. An FCM is able to represent unstructured knowledge through causalities ex-

pressed in imprecise terms and simulate the operation of the system. 

B. Structure of the Paper 

The structure of the paper is as followings. In the 1 paragraph, section C, the litera-

ture review is provided. In chapter 2, an overview on the applied method, namely the 

Fuzzy Cognitive Maps is given. In chapter 3, the results of the complex model’s 

simulation are introduced. At the end of the paper, the authors concluded that for 

carrying out the proposed assessment methodology, expert knowledge is needed to 

ensure the reliability of the results obtained. The future research intentions are sum-

marized in chapter 5. 

C. Literature Review 

Almost all existing techniques evaluate resource use based on their burden relative 

to value, while the central point of Circular Economy (CE) is to create value through 

material retention. The existing burden-orientated techniques are therefore unsuitable 

for guiding managers in relation to CE objectives [1]. Programmes and policies for a 

CE are becoming key to regional and international plans for creating sustainable sce-

narios. Framed as a technologically driven and economically profitable vision of con-

tinued growth in a resource-scarce world, the CE is taken up by the European Com-

mission and global business leaders alike [2].  

Sustainability aims at addressing environmental and socio-economic issues in the 

long term. In general, the relevant literature on sustainability has focused mainly on 

the environmental issues, whereas, more recently, a CE is proposed as one of the lat-

est concepts for addressing both the environmental and socio-economic issues. A CE 



aims at transforming waste into resources and on bridging production and consump-

tion activities; however, there is still limited research focusing on these aspects [3].  

D. Preliminaries of the Research 

In order to model the problem under investigation, a method based on of Fuzzy 

Cognitive Maps (FCM) [6-8] was selected. This method is capable of simulating the 

operation of a model as long as the input data sets are available that include the fac-

tors with significant effects on the system and also the historical time series of these 

factors, which together allow the representation of the features of factors describing 

the operation of a systems. The authors’ intention was to find out how to build up a 

sustainable waste and material management system. 

2 Methodology applied 

The research is divided into two main phases. In the first one, the significant 33 

factors (Table 1) of the waste management systems were determined [9]. The time 

series of these elements were developed based on the results of a text mining method 

[10]. Next, model calculations were made on the basis of fuzzy graph structure [11-

13]. 

A. Fuzzy Cognitive Map  

Based on the gathered data, the authors constructed the connection matrix. FCM 

consists of nodes and weighted arcs, which are graphically illustrated as a signed 

weighted graph with feedback. Nodes of the graph stand for the concepts describing 

behavioral characteristics of the system. Signed weighted arcs represent the causal 

relationships that exist among concepts and interconnect them. The relationships be-

tween concepts are described using a degree of causality. Experts describe this degree 

of influence using linguistic variables for every weight; so weight for any intercon-

nection can range from [-1, 1]. The degree of causal relationship between different 

factors of the FCM can have either positive or negative sign and values of weights 

express the degree of the causal relationship. Linkages between concepts express the 

influence one concept on another. 

Table 1. The identified factors of the system 

Main 

factor 
Sub-factor CID 

Main 

factor 
Sub-factor CID 

T
ec

h
n
o
lo

g
y
 (

C
1
) 

Engineering knowledge C1.1 

S
o
ci

et
y
 (

C
4

) 

Public opinion C4.1 

Technological system and its coherence C1.2 Public health C4.2 

Local geographical and infrastructural 

conditions 

C1.3 Political and power factors C4.3 

Technical requirements in the EU and 

national policy 

C1.4 Education C4.4 

Technical level of equipment C1.5 Culture C4.5 



Main 

factor 
Sub-factor CID 

Main 

factor 
Sub-factor CID 

E
n
v

ir
o
n
m

en
t 

(C
2
) 

Impact on environmental elements C2.1 Social environment C4.6 

Waste recovery C2.2 Employment C4.7 

Geographical factor C2.3 

L
aw

 (
C

5
) 

Monitoring and sanctioning C5.1 

Resource use C2.4 Internal and external legal coherence 

(domestic law) 

C5.2 

Wildlife (social acceptance) C2.5 General waste management regulation in 

the EU 

C5.3 

Environmental feedback C2.6 Policy strategy and method of implemen-

tation 

C5.4 

E
co

n
o
m

y
 (

C
3
) 

Composition and income level of the 

population 

C3.1 

In
st

it
u
ti

o
n
 (

C
6
) 

Publicity, transparency (data manage-

ment) 

C6.1 

Changes in public service fees C3.2 Elimination of duplicate authority C6.2 

Depreciation and resource development C3.3 Fast and flexible administration C6.3 

Economic interest of operators C3.4 Cooperation among institutions C6.4 

Financing C3.5 Improvement of professional standards C6.5 

Structure of industry C3.6  

3 Results 

The generated connection matrix contains 1056 (33*32) connection. Since the rep-

resentation and interpretation of such a complex model is rather difficult, only the 

most important connections are represented in Fig. 1 with the help alpha-cuts. 

With the help of α-cuts, the above graph clearly reveals that there are elements of 

the system which are very important – whether positive or negative effect – on the 

sustainability of the system’s operation. It can also be seen which are of great im-

portance on the other factors (factors with 2-4 outward impact). There are also factors 

which accept greatest impact (impact from 2-4 factors). 

Accordingly, factors with outward impact are: 

• ‘Improvement of professional standards’ (the greatest effect on four factors), 

followed by 

• ‘Waste recovery’ and ‘Internal and external legal coherence’ (effect on three 

factors), and finally 

• ‘Changes in public service fees’ close the line with influence on two factors. 

The most influence accepted by  

• ‘Structure of industry’ (impact by 3 factors), and 

‘Public opinion’, ‘Public health’, ‘Financing’, and ‘Changes in public service fees’ 

(impact by 3 factors). 

 



 

Fig. 1. The most important connection (-1 and 1) of the factors  

are represented with the help alpha-cuts 

Accordingly, factors with outward impact are: 

• ‘Improvement of professional standards’ (the greatest effect on four factors), 

followed by 

• ‘Waste recovery’ and ‘Internal and external legal coherence’ (effect on three 

factors), and finally 

• ‘Changes in public service fees’ close the line with influence on two factors. 

The most influence accepted by  

• ‘Structure of industry’ (impact by 3 factors), and 

‘Public opinion’, ‘Public health’, ‘Financing’, and ‘Changes in public service fees’ 

(impact by 3 factors). 

A. Model Reduction 

During the simulation of this complex model, the authors proposed a new method 

to reduce the extent of the model, where three different distance definitions were in-

troduced. The essence of this method is to create clusters of factors and using these 

clusters to develop new reduced models. Thus, reducing the number of factors, the 

model is more easily understandable and realistic.  

Taking into account the special characteristics of the studied engineering problem, 

the number of clusters in the reduced model should be around six (based on the expert 



consensus [9]). Or, at least much less than the number of the factors in the detailed 

model. 

The authors have made several attempts to find the right reduced model in order to 

determine the right clusters. On the one hand, if only some of the factors are merged, 

to achieve the goal of unification is not possible. On the other hand, if there are too 

many factors to be merged then the interpretation of the combined factors is difficult 

or almost impossible. The intention was to reduce the original matrix by a matrix with 

around 15 clusters. 

The above mentioned three methods are different only in the metrics representing 

the similarity between the factors. This approach may be considered as a strong gen-

eralization of the state reduction procedure of sequential circuits or finite state ma-

chines [14, 15]. The essence of the methods is to create clusters from the factors and 

apply these clusters as the new factors in the new, simplified model. The base for 

binding these clusters is the use of a tolerance relation (a reflexive and symmetric, but 

non-transitive relation) [16, 17]. 

The authors have chosen matrices, each including 15 clusters. Tables 2-4 introduce 

the clusters in the reduced connection matrix, using different metrics. 

Table 2. The clusters in the matrix produced by Metric A 

1 C3.1+C3.2+C3.3+C3.4+C3.5+C2.5+C1.3+C6.1+C6.2+C6.3+C6.4+C6.5+C4.3+C4.4+C4.5+C4.6 

2 C3.3+C3.4+C3.6+C2.3+C2.5+C1.3+C6.2+C6.3+C6.4+C4.3+C4.5 

3 C3.1+C2.1+C2.5+C1.3+C6.1+C6.2+C6.4+C4.3+C4.7 

4 C3.3+C3.6+C2.2+C6.2+C6.3+C6.4 

5 C3.3+C3.4+C3.5+C2.3+C2.5+C1.1+C1.3+C6.2+C6.3+C6.4+C6.5+C4.3+C4.5 

6 C3.1+C3.2+C2.4+C6.2+C6.3+C4.3 

7 C3.1+C3.2+C3.3+C3.5+C2.5+C2.6+C1.3+C6.1+C6.2+C6.4+C6.5+C4.3 

8 C3.3+C3.5+C2.3+C5.1+C5.3+C1.1+C1.2+C1.4+C1.5+C6.3+C6.4+C4.3+C4.5 

9 C3.3+C3.5+C2.5+C5.2+C1.1+C1.3+C6.1+C6.2+C6.4+C6.5+C4.2+C4.3+C4.4+C4.5+C4.6 

10 C3.3+C3.5+C2.3+C5.3+C5.4+C1.1+C1.4+C1.5+C6.2+C6.4+C6.5+C4.3+C4.5 

11 C3.2+C3.3+C3.4+C3.5+C2.5+C1.1+C1.3+C6.1+C6.2+C6.3+C6.4+C6.5+C4.2+C4.3+C4.4+C4.5+C4.6 

12 C3.1+C3.2+C3.3+C3.4+C3.5+C1.2+C1.5+C6.1+C6.2+C6.3+C6.4+C6.5+C4.3+C4.4+C4.5+C4.6 

13 
C3.2+C3.3+C3.4+C3.5+C1.1+C1.2+C1.4+C1.5+C6.1+C6.2+C6.3+C6.4+C6.5+C4.2+C4.3+C4.4+C4.5+

C4.6 

14 C3.3+C3.5+C5.1+C5.2+C1.1+C1.4+C1.5+C6.4+C4.1+C4.2+C4.3+C4.4+C4.5 

15 C3.1+C3.3+C3.5+C2.5+C2.6+C1.3+C6.1+C6.2+C6.4+C4.3+C4.7 

Table 3. The clusters in the matrix produced by Metric B 

1 C3.1+C3.2+C3.3+C3.4+C3.5+C5.2+C5.3+C5.4+C1.1+C1.2+C1.4+C6.4+C4.6 

2 C3.2+C3.3+C3.4+C3.5+C3.6+C5.3+C5.4+C1.1+C1.2+C1.4+C1.5 



3 C3.1+C3.5+C2.1+C2.3+C2.5+C5.2+C5.3+C5.4+C1.1+C1.2+C1.3+C4.4+C4.5+C4.6 

4 C3.2+C3.3+C3.5+C3.6+C2.2+C2.5+C1.1+C1.2+C1.5 

5 C3.1+C3.3+C3.5+C2.3+C2.5+C5.2+C5.3+C5.4+C1.1+C1.2+C1.3+C1.4+C6.1+C6.3+C6.4+C6.5+C4.4+C4.5+C4.6 

6 C3.5+C3.6+C2.3+C2.4+C2.5+C5.3+C1.1+C4.4 

7 C3.1+C3.2+C3.3+C3.5+C2.5+C5.2+C5.3+C5.4+C1.1+C1.2+C1.4+C6.4+C4.6 

8 C3.1+C3.4+C3.5+C2.6+C5.2+C5.3+C5.4+C1.1+C1.4+C6.1+C4.4+C4.5+C4.6 

9 C3.3+C3.5+C2.2+C2.3+C2.5+C5.1+C1.1+C1.2+C1.5+C6.5+C4.4 

10 C3.1+C3.3+C3.4+C3.5+C5.2+C5.3+C5.4+C1.1+C1.2+C1.4+C6.1+C6.4+C6.5+C4.4+C4.5+C4.6 

11 C3.1+C3.3+C3.4+C3.5+C5.4+C1.1+C1.2+C1.4+C6.1+C6.2+C6.4+C6.5+C4.3+C4.4+C4.6 

12 C3.1+C3.3+C2.3+C2.5+C5.2+C5.3+C5.4+C1.1+C1.2+C1.3+C1.4+C6.1+C6.3+C4.1+C4.2+C4.4+C4.5+C4.6 

13 C3.1+C3.3+C2.3+C2.5+C5.2+C5.3+C5.4+C1.1+C1.2+C1.3+C1.4+C6.1+C6.3+C6.4+C6.5+C4.2+C4.4+C4.5+C4.6 

14 C3.1+C3.2+C3.3+C3.4+C3.5+C5.3+C5.4+C1.1+C1.2+C1.4+C6.4+C4.3+C4.6 

15 C3.1+C3.3+C2.3+C2.5+C5.2+C5.3+C1.1+C1.2+C1.3+C1.4+C6.1+C6.3+C6.4+C6.5+C4.2+C4.4+C4.5+C4.6+C4.7 

Table 4. The clusters in the matrix produced by Metric C 

1 C3.1+C3.2+C3.3+C3.4+C3.5+C1.1+C1.4+C6.1+C6.4 

2 C3.3+C3.4+C3.5+C3.6+C5.3+C5.4+C1.1+C1.2+C1.5 

3 C3.1+C2.1+C2.5+C2.6+C4.5 

4 C3.6+C2.2 

5 C3.3+C3.5+C2.3+C2.5+C5.3+C5.4+C1.1+C1.4+C1.5+C6.4+C4.3+C4.4 

6 C2.4+C2.5+C2.6 

7 C3.1+C3.3+C3.5+C2.5+C1.1+C1.3+C1.4+C6.1+C6.3+C6.4+C4.3+C4.4 

8 C3.1+C3.2+C2.6 

9 C2.1+C2.3+C2.5+C5.1+C1.1+C1.3+C4.4+C4.5 

10 C3.3+C3.5+C2.5+C5.2+C5.3+C5.4+C1.1+C1.4+C1.5+C6.4+C4.3+C4.4 

11 C3.2+C3.3+C3.4+C3.5+C5.4+C1.1+C1.2+C1.4+C6.1+C6.4 

12 C3.1+C3.3+C3.4+C3.5+C1.1+C1.4+C6.1+C6.2+C6.3+C6.4+C6.5+C4.3 

13 C2.5+C5.1+C5.2+C5.3+C5.4+C1.1+C1.4+C1.5+C4.1+C4.2+C4.4+C4.5+C4.6 

14 C3.1+C3.3+C2.5+C1.1+C1.3+C1.4+C6.1+C6.3+C6.4+C4.3+C4.4+C4.5+C4.6 

15 C3.1+C2.5+C1.1+C1.3+C1.4+C6.1+C6.3+C6.4+C4.3+C4.4+C4.5+C4.6+C4.7 

 

Tables 2-4 show that there are overlapping between the clusters. Accordingly, a 

factor is listed 1 to 15 times in the clusters in the new models. The role of the factors 

in the clusters is introduced in Table 5. 

Based on international experience, perhaps it is still surprising that the most im-

portant element of the system is ‘Engineering knowledge’. It is followed by financial, 



technological and legal factors (C1.2, C3.3, C3.5, C1.4, and C5.3). 

The authors concluded that Metric A to B and C shows a match of 75% in terms of 

the most common elements however B to C and vice versa shows a match of 94%. 

The authors also verified that 12 factors out of the most common 16 elements occur 

quite often in each cluster (max. 15, min. 4 times). In this sense, the metrics gave a 

very similar outcome. 

As a result of the introduces fuzzy cognitive modelling techniques and the pro-

posed new model reduction method it can be stated that the above listed factors can be 

of greatest importance on the promotion of the circular economy as a sustainable 

waste and material management system.  

Since the indicated factors having the most significant effect on a system’s sustain-

ability receive the proper emphasis during the design and operation process, the effect 

of the other factors contributes also to the long-term management of the system. 

The model formulated on the basis of the proposed method can be an example of 

how an environmentally and socially-economically mission can be done in a way to 

be able to provide a favourable solution from economic, legal and institutional point 

of view. 

On the basis of the reduced model, the author make a proposal on what focus and 

what methods should be taken into account to set up a proper waste and material 

management system that meets the technical, legal and environmental requirements, 

and social expectations, as well as it can be operated economically in short and long 

term. 

The ‘Engineering knowledge’ plays decisive role in design for proper technical, 

economic and environmental requirements. The factor ‘Technological system and its 

coherence’ has also major importance. The reason for this is that it is beneficial to 

reproduce the operation of the natural processes and ecosystems in the design of ur-

ban management activities. According to the previous principle, the waste and materi-

al management cycles should be organized and implemented in a closed way. In the 

development of the flow of material and waste cycles, the technology, its quality and 

its availability plays the biggest role. We should strive to create more closed systems 

through innovation.  

It would be practical to develop a relatively self-sustaining system in this field. A 

decision support mechanism should be developed in order to find the most appropri-

ate solution in specific time and place for (waste) materials in different quality and 

quantity. 

Due to ensuring its promotion, it is necessary to make a decision in a short time 

about how and in what proportion used materials can return to the production cycle. 

Furthermore, to make decision about components that are unable to participate in the 

cycle. 

Table 5. The role (frequency) of the factors in the new models 

  

Met-

ric A  

Met-

ric B  

Met-

ric C  

C1.1 Engineering knowledge 15 11 11 



C1.2 Technological system and its coherence 12 2 2 

C1.3 Local geographical and infrastructural conditions 5 4 4 

C1.4 Technical requirements in the EU and national policy 11 9 9 

C1.5 Technical level of equipment 3 4 4 

C2.1 Impact on environmental elements 1 2 1 

C2.2 Waste recovery 2 1 2 

C2.3 Geographical factor 7 2 2 

C2.4 Resource use 1 1 1 

C2.5 Wildlife (social acceptance) 9 9 9 

C2.6 Environmental feedback 1 3 3 

C3.1 Composition and income level of the population 11 7 7 

C3.2 Changes in public service fees 5 3 3 

C3.3 Depreciation and resource development 12 8 8 

C3.4 Economic interest of operators 6 4 4 

C3.5 Financing 12 7 7 

C3.6 Structure of industry 3 2 2 

C4.1 Public opinion 1 1 1 

C4.2 Public health 3 1 1 

C4.3 Political and power factors 3 6 6 

C4.4 Education 10 7 7 

C4.5 Culture 7 5 5 

C4.6 Social environment 11 3 3 

C4.7 Employment 1 1 1 

C5.1 Monitoring and sanctioning 1 3 2 

C5.2 Internal and external legal coherence (domestic law) 9 2 2 

C5.3 General waste management regulation in the EU 12 4 4 

C5.4 Policy strategy and method of implementation 11 5 5 

C6.1 Publicity, transparency (data management) 7 6 6 

C6.2 Elimination of duplicate authority 1 1 1 

C6.3 Fast and flexible administration 4 4 4 

C6.4 Cooperation among institutions 8 8 8 

C6.5 Improvement of professional standards 6 1 1 

4 Conclusions and Future Research 

The intermeshing of disciplines from the natural sciences, social sciences, engi-



neering and management is essential to addressing this complex problem. The study 

presented here possesses also this feature for future applications.  

Six to eight professionals with extensive experience in their fields are needed to 

support the fuzzy cognitive map methodology. The work of the group of experts 

needed to be moderated by an environmental specialist who also helps to interpret the 

results. So, at this stage of the evaluation the expertise and experience is of great im-

portance. The support of an IT staff member is also required who performs the simu-

lations based on the in-put data and help in producing results. 

Therefore, it can be concluded that for carrying out the proposed assessment meth-

odology, expert knowledge is needed to ensure the reliability of the results obtained. 

The authors’ purpose is to continue the investigation to understand the deeper con-

text of the circular economy and try to develop a refined model. 
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